Simulink[®] Graphical User Interface

R2013**b**

MATLAB[®] SIMULINK[®]

How to Contact MathWorks

(a)

www.mathworks.comWebcomp.soft-sys.matlabNewsgroupwww.mathworks.com/contact_TS.htmlTechnical Support

suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7001 (Fax)

508-647-7000 (Phone)

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Simulink[®] Graphical User Interface

© COPYRIGHT 1990–2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2007	Online only
March 2008	Online only
October 2008	Online only
March 2009	Online only
September 2009	Online only
March 2010	Online only
September 2010	Online only
April 2011	Online only
September 2011	Online only
March 2012	Online only
September 2012	Online only
March 2013	Online only
September 2013	Online only

New for Simulink 7.0 (Release 2007b) Revised for Simulink 7.1 (Release 2008a) Revised for Simulink 7.2 (Release 2008b) Revised for Simulink 7.3 (Release 2009a) Revised for Simulink 7.4 (Release 2009b) Revised for Simulink 7.5 (Release 2010a) Revised for Simulink 7.6 (Release 2010b) Revised for Simulink 7.7 (Release 2011a) Revised for Simulink 7.8 (Release 2011b) Revised for Simulink 7.9 (Release 2012a) Revised for Simulink 8.0 (Release 2012b) Revised for Simulink 8.1 (Release 2013a) Revised for Simulink 8.1 (Release 2013a)

Configuration Parameters Dialog Box

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Model Configuration Pane" on page 1-6
- "Solver Pane" on page 1-9
- "Data Import/Export Pane" on page 1-81
- "Optimization Pane: General" on page 1-122
- "Optimization Pane: Signals and Parameters" on page 1-164
- "Optimization Pane: Stateflow" on page 1-204
- "Diagnostics Pane: Solver" on page 1-210
- "Diagnostics Pane: Sample Time" on page 1-237
- "Diagnostics Pane: Data Validity" on page 1-253
- "Diagnostics Pane: Type Conversion" on page 1-311
- "Diagnostics Pane: Connectivity" on page 1-324
- "Diagnostics Pane: Compatibility" on page 1-353
- "Diagnostics Pane: Model Referencing" on page 1-359
- "Diagnostics Pane: Saving" on page 1-374
- "Diagnostics Pane: Stateflow" on page 1-380
- "Hardware Implementation Pane" on page 1-398
- "Model Referencing Pane" on page 1-492
- "Simulation Target Pane: General" on page 1-528

- "Simulation Target Pane: Symbols" on page 1-542
- "Simulation Target Pane: Custom Code" on page 1-546
- "Run on Target Hardware Pane" on page 1-564

Configuration Parameters Dialog Box Overview

The **Configuration Parameters** dialog box specifies the settings for a model's active *configuration set*. These parameters determine the type of solver used, import and export settings, and other values that determine how the model runs. See Configuration Sets for more information.

Note You can also use the Model Explorer to modify settings for the active configuration set or any other configuration set. See "Model Explorer Overview" for more information.

To display the dialog box, in the Simulink[®] Editor, select **Simulation > Model Configuration Parameters**, or press **Ctrl+E**. The dialog box appears.

🖏 Configuration Parameters: slde	emo_fuelsys/Configu	ration (Active)			×
Select:	Simulation time				
Solver Data Import/Export Optimization	Start time: 0.0 Solver options		Stop time: 2000		
- Diagnostics - Hardware Implementat Model Referencing		Variable-step 🗸	Solver: Relative tolerance:	ode45 (Dormand-Prince)	
Gimulation Target ⊡ Code Generation		auto		1e-5	Е
	Initial step size: Number of conse		Shape preservation:	Disable all 🔹	
	Tasking and sample time options				
	Automatically	periodic sample times: handle rate transition for data tran value indicates higher task priority		•	
	Zero-crossing opt	ions trol: Use local settings	✓ Algorithm:	Nonadaptive	
	Time tolerance:	10*128*eps	Signal threshold		
	Number of consec	cutive zero crossings:		1000	
•					•
0			ОК	Cancel Help A	pply

The dialog box groups the configuration parameters into various categories. To display the parameters for a specific category, click the category in the **Select** tree on the left side of the dialog box.

In most cases, Simulink software does not apply changes until you click **OK** or **Apply** at the bottom of the dialog box. The **OK** button applies your changes and dismisses the dialog box. The **Apply** button applies your changes but leaves the dialog box open.

Note Each of the parameters in the **Configuration Parameters** dialog box can also be set via the sim command. Each parameter description includes the corresponding command line information.

T

Model Configuration Pane

In this section ...

"Model Configuration Overview" on page 1-6

"Name" on page 1-7

"Description" on page 1-8

Model Configuration Overview

View or edit the name and description of your configuration set.

In the Model Explorer you can edit the name and description of your configuration sets.

In the Model Explorer or Simulink Preferences window you can edit the description of your template configuration set, Model Configuration Preferences. Go to the Model Configuration Preferences to edit the template Configuration Parameters to be used as defaults for new models.

When editing the Model Configuration preferences, you can click **Restore to Default Preferences** to restore the default configuration settings for creating new models. These underlying defaults cannot be changed.

Name

Specify the name of your configuration set.

Settings

Default: Configuration (for Active configuration set) or Configuration Preferences (for default configuration set).

Edit the name of your configuration set.

In the Model Configuration Preferences, the name of the default configuration is always Configuration Preferences, and cannot be changed.

Description

Specify a description of your configuration set.

Settings No Default

Enter text to describe your configuration set.

Solver Pane

🚱 Configuration Parameters: vdp/C	Configuration (Active)			×
Select:	Simulation time			
Solver Data Import/Export	Start time: 0.0		Stop time: 20	
 Optimization Diagnostics 	Solver options			
Hardware Implementation Model Referencing	Type: Vari	able-step 🔹	Solver:	ode45 (Dormand-Prince)
 Simulation Target Code Generation 	Max step size: auto	0	Relative tolerance:	1e-3
	Min step size: auto	0	Absolute tolerance:	1e-6
	Initial step size: auto	0	Shape preservation:	
	Number of consecutiv	ve min steps:	1	
	Tasking and sample ti	me options		
	Tasking mode for periodic sample times: SingleTasking			
	Automatically hand	dle rate transition for data transfer		
	Higher priority value	ue indicates higher task priority		
	Zero-crossing options	;		
	Zero-crossing control	: Use local settings	 Algorithm: 	Nonadaptive
	Time tolerance:	10*128*eps	Signal threshold	auto
	Number of consecutiv	e zero crossings:		1000
0				OK Cancel Help Apply

In this section... "Solver Overview" on page 1-11 "Start time" on page 1-13 "Stop time" on page 1-15 "Type" on page 1-17 "Solver" on page 1-20 "Max step size" on page 1-28 "Initial step size" on page 1-30

п

In this section
"Min step size" on page 1-32
"Relative tolerance" on page 1-34
"Absolute tolerance" on page 1-36
"Shape preservation" on page 1-39
"Maximum order" on page 1-41
"Solver reset method" on page 1-43
"Number of consecutive min steps" on page 1-45
"Solver Jacobian Method" on page 1-47
"Tasking mode for periodic sample times" on page 1-49
"Automatically handle rate transition for data transfer" on page 1-51
"Deterministic data transfer" on page 1-53
"Higher priority value indicates higher task priority" on page 1-55
"Zero-crossing control" on page 1-57
"Time tolerance" on page 1-59
"Number of consecutive zero crossings" on page 1-61
"Algorithm" on page 1-63
"Signal threshold" on page 1-65
"Periodic sample time constraint" on page 1-67
"Fixed-step size (fundamental sample time)" on page 1-70
"Sample time properties" on page 1-72
"Extrapolation order" on page 1-75
"Number Newton's iterations" on page 1-77
"Allow tasks to execute concurrently on target" on page 1-79

Solver Overview

Specify the simulation start and stop time, and the solver configuration for the simulation. Use the Solver pane to set up a solver for a model's active configuration set.

A solver computes a dynamic system's states at successive time steps over a specified time span, using information provided by the model.

Configuration

- **1** Select a solver type from the **Type** list.
- 2 Select a solver from the Solver list.
- 3 Set the parameters displayed for the selected type and solver combination.
- **4** Apply the changes.

Tips

- To open the Solver pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Solver.
- Simulation time is not the same as clock time. For example, running a simulation for 10 seconds usually does not take 10 seconds. Total simulation time depends on factors such as model complexity, solver step sizes, and computer speed.
- Fixed-step solver type is required for code generation, unless you use an S-function or RSim target.
- Variable-step solver type can significantly shorten the time required to simulate models in which states change rapidly or which contain discontinuities.

- Solvers
- Choosing a Solver

- Specifying a Simulation Start and Stop Time
- Configuration Parameters Dialog Box
- Solver Pane

Start time

Specify the start time for the simulation or generated code as a double-precision value, scaled to seconds.

Settings

Default: 0.0

- A start time must be less than or equal to the stop time. For example, use a nonzero start time to delay the start of a simulation while running an initialization script.
- The values of block parameters with initial conditions must match the initial condition settings at the specified start time.
- Simulation time is not the same as clock time. For example, running a simulation for 10 seconds usually does not take 10 seconds. Total simulation time depends on factors such as model complexity, solver step sizes, and computer speed.

Command-Line Information

Parameter: StartTime Type: string Value: any valid value Default: '0.0'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	0.0

- Specifying a Simulation Start and Stop Time
- Configuration Parameters Dialog Box
- Solver Pane

Stop time

Specify the stop time for the simulation or generated code as a double-precision value, scaled to seconds.

Settings

Default: 10

- Stop time must be greater than or equal to the start time.
- Specify inf to run a simulation or generated program until you explicitly pause or stop it.
- If the stop time is the same as the start time, the simulation or generated program runs for one step.
- Simulation time is not the same as clock time. For example, running a simulation for 10 seconds usually does not take 10 seconds. Total simulation time depends on factors such as model complexity, solver step sizes, and computer speed.
- If your model includes blocks that depend on absolute time and you are creating a design that runs indefinitely, see "Blocks That Depend on Absolute Time".

Command-Line Information

Parameter: StopTime Type: string Value: any valid value Default: '10.0'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Any positive value

- "Blocks That Depend on Absolute Time"
- Using Blocks to Stop or Pause a Simulation
- Specifying a Simulation Start and Stop Time
- Configuration Parameters Dialog Box
- Solver Pane

Туре

Select the type of solver you want to use to simulate your model.

Settings

Default: Variable-step

Variable-step

Step size varies from step to step, depending on model dynamics. A variable-step solver:

- Reduces step size when model states change rapidly, to maintain accuracy.
- Increases step size when model states change slowly, to avoid unnecessary steps.

Variable-step is recommended for models in which states change rapidly or that contain discontinuities. In these cases, a variable-step solver requires fewer time steps than a fixed-step solver to achieve a comparable level of accuracy. This can significantly shorten simulation time.

Fixed-step

Step size remains constant throughout the simulation.

Required for code generation, unless you use an S-function or RSim target.

Note The solver computes the next time as the sum of the current time and the step size.

Dependencies

Selecting Variable-step enables the following parameters:

- Solver
- Max step size
- Min step size

- Initial step size
- Relative tolerance
- Absolute tolerance
- Shape preservation
- Initial step size
- Number of consecutive min steps
- Zero-crossing control
- Time tolerance
- Algorithm

Selecting Fixed-step enables the following parameters:

- Solver
- Periodic sample time constraint
- Fixed-step size (fundamental sample time)
- Tasking mode for periodic sample times
- Higher priority value indicates higher task priority
- Automatically handle rate transitions for data transfers

Command-Line Information

Parameter: SolverType Type: string Value: 'Variable-step' | 'Fixed-step' Default: 'Variable-step'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	Fixed-step

- Solvers
- Choosing a Solver
- "Purely Discrete Systems"
- Configuration Parameters Dialog Box
- Solver Pane

Solver

Select the solver you want to use to compute the model's states during simulation or code generation.

Settings

The available solvers change depending on which solver Type you selected:

- "Fixed-step Solvers" on page 1-20
- "Variable-step Solvers" on page 1-21

Fixed-step Solvers. Default: ode3 (Bogacki-Shampine)

ode3 (Bogacki-Shampine)

Computes the model's state at the next time step as an explicit function of the current value of the state and the state derivatives, using the Bogacki-Shampine Formula integration technique to compute the state derivatives. In the following example, X is the state, DX is the state derivative, and h is the step size:

X(n+1) = X(n) + h * DX(n)

Discrete (no continuous states)

Computes the time of the next time step by adding a fixed step size to the current time.

Use this solver for models with no states or discrete states only, using a fixed step size. Relies on the model's blocks to update discrete states.

The accuracy and length of time of the resulting simulation depends on the size of the steps taken by the simulation: the smaller the step size, the more accurate the results but the longer the simulation takes.

Note The fixed-step discrete solver cannot be used to simulate models that have continuous states.

ode8 (Dormand-Prince RK8(7))

Uses the eighth-order Dormand-Prince formula to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives approximated at intermediate points.

ode5 (Dormand-Prince)

Uses the fifth-order Dormand-Prince formula to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives approximated at intermediate points.

ode4 (Runge-Kutta)

Uses the fourth-order Runge-Kutta (RK4) formula to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives.

ode2 (Heun)

Uses the Heun integration method to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives.

ode1 (Euler)

Uses the Euler integration method to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives.

ode14x (extrapolation)

Uses a combination of Newton's method and extrapolation from the current value to compute the model's state at the next time step, as an *implicit* function of the state and the state derivative at the next time step. In the following example, X is the state, DX is the state derivative, and h is the step size:

X(n+1) - X(n) - h * DX(n+1) = 0

This solver requires more computation per step than an explicit solver, but is more accurate for a given step size.

Variable-step Solvers. Default: ode45 (Dormand-Prince)

ode45 (Dormand-Prince)

Computes the model's state at the next time step using an explicit Runge-Kutta (4,5) formula (the Dormand-Prince pair) for numerical integration.

ode45 is a one-step solver, and therefore only needs the solution at the preceding time point.

Use ode45 as a first try for most problems.

Discrete (no continuous states)

Computes the time of the next step by adding a step size that varies depending on the rate of change of the model's states.

Use this solver for models with no states or discrete states only, using a variable step size.

ode23 (Bogacki-Shampine)

Computes the model's state at the next time step using an explicit Runge-Kutta (2,3) formula (the Bogacki-Shampine pair) for numerical integration.

ode23 is a one-step solver, and therefore only needs the solution at the preceding time point.

ode23 is more efficient than ode45 at crude tolerances and in the presence of mild stiffness.

ode113 (Adams)

Computes the model's state at the next time step using a variable-order Adams-Bashforth-Moulton PECE numerical integration technique.

ode113 is a multistep solver, and thus generally needs the solutions at several preceding time points to compute the current solution.

ode113 can be more efficient than ode45 at stringent tolerances.

ode15s (stiff/NDF)

Computes the model's state at the next time step using variable-order numerical differentiation formulas (NDFs). These are related to, but more efficient than the backward differentiation formulas (BDFs), also known as Gear's method.

ode15s is a multistep solver, and thus generally needs the solutions at several preceding time points to compute the current solution.

ode15s is efficient for stiff problems. Try this solver if ode45 fails or is inefficient.

ode23s (stiff/Mod. Rosenbrock)

Computes the model's state at the next time step using a modified Rosenbrock formula of order 2.

ode23s is a one-step solver, and therefore only needs the solution at the preceding time point.

ode23s is more efficient than ode15s at crude tolerances, and can solve stiff problems for which ode15s is ineffective.

```
ode23t (Mod. stiff/Trapezoidal)
```

Computes the model's state at the next time step using an implementation of the trapezoidal rule with a "free" interpolant.

ode23t is a one-step solver, and therefore only needs the solution at the preceding time point.

Use ode23t if the problem is only moderately stiff and you need a solution with no numerical damping.

ode23tb (stiff/TR-BDF2)

Computes the model's state at the next time step using a multistep implementation of TR-BDF2, an implicit Runge-Kutta formula with a trapezoidal rule first stage, and a second stage consisting of a backward differentiation formula of order two. By construction, the same iteration matrix is used in evaluating both stages.

ode23tb is more efficient than ode15s at crude tolerances, and can solve stiff problems for which ode15s is ineffective.

Tips

- Identifying the optimal solver for a model requires experimentation, for an in-depth discussion, see Choosing a Solver.
- The optimal solver balances acceptable accuracy with the shortest simulation time.

- Simulink software uses a discrete solver for any model with no states or discrete states only, even if you specify a continuous solver.
- A smaller step size increases accuracy, but also increases simulation time.
- The degree of computational complexity increases for oden, as n increases.
- As computational complexity increases, the accuracy of the results also increases.

Dependencies

Selecting the ode1 (Euler), ode2 (Huen), ode 3 (Bogacki-Shampine), ode4 (Runge-Kutta), ode 5 (Dormand-Prince), or Discrete (no continuous states) fixed-step solvers enables the following parameters:

- Fixed-step size (fundamental sample time)
- Periodic sample time constraint
- Tasking mode for periodic sample times
- Automatically handle rate transition for data transfers
- Higher priority value indicates higher task priority

Selecting ode14x (extrapolation) enables the following parameters:

- Fixed-step size (fundamental sample time)
- Extrapolation order
- Number Newton's iterations
- Periodic sample time constraint
- Tasking mode for periodic sample times
- Automatically handle rate transition for data transfers
- Higher priority value indicates higher task priority

Selecting the Discrete (no continuous states) variable-step solver enables the following parameters:

• Max step size

- Automatically handle rate transition for data transfers
- Higher priority value indicates higher task priority
- Zero-crossing control
- Time tolerance
- Number of consecutive zero crossings
- Algorithm

Selecting ode45 (Dormand-Prince), ode23 (Bogacki-Shampine), ode113 (Adams), or ode23s (stiff/Mod. Rosenbrock) enables the following parameters:

- Max step size
- Min step size
- Initial step size
- Relative tolerance
- Absolute tolerance
- Shape preservation
- Number of consecutive min steps
- Automatically handle rate transition for data transfers
- Higher priority value indicates higher task priority
- Zero-crossing control
- Time tolerance
- Number of consecutive zero crossings
- Algorithm

Selecting ode15s (stiff/NDF), ode23t (Mod. stiff/Trapezoidal), or ode23tb (stiff/TR-BDF2) enables the following parameters:

- Max step size
- Min step size

- Initial step size
- Solver reset method
- Number of consecutive min steps
- Relative tolerance
- Absolute tolerance
- Shape preservation
- Maximum order
- Automatically handle rate transition for data transfers
- Higher priority value indicates higher task priority
- Zero-crossing control
- Time tolerance
- Number of consecutive zero crossings
- Algorithm

Command-Line Information

```
Parameter: Solver

Type: string

Value: 'VariableStepDiscrete' | 'ode45' | 'ode23' |

'ode113' | 'ode15s' | 'ode23s' | 'ode23t' | 'ode23tb' |

'FixedStepDiscrete' | 'ode5' | 'ode4' | 'ode3' | 'ode2' |

'ode1' | 'ode14x'

Default: 'ode45'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Discrete (no continuous states)

- Solvers
- Choosing a Solver
- "Purely Discrete Systems"
- Configuration Parameters Dialog Box
- Solver Pane

Max step size

Specify the largest time step that the solver can take.

Settings

Default: auto

- For the discrete solver, the default value (auto) is the model's shortest sample time.
- For continuous solvers, the default value (auto) is determined from the start and stop times. If the stop time equals the start time or is inf, Simulink software chooses 0.2 seconds as the maximum step size. Otherwise, it sets the maximum step size to

$$h_{\max} = \frac{t_{stop} - t_{start}}{50}$$

Tips

- Generally, the default maximum step size is sufficient. If you are concerned about the solver missing significant behavior, change the parameter to prevent the solver from taking too large a step.
- If the time span of the simulation is very long, the default step size might be too large for the solver to find the solution.
- If your model contains periodic or nearly periodic behavior and you know the period, set the maximum step size to some fraction (such as 1/4) of that period.
- In general, for more output points, change the refine factor, not the maximum step size.

Dependencies

This parameter is enabled only if the solver **Type** is set to Variable-step.

Command-Line Information

Parameter: MaxStep Type: string Value: any valid value Default: 'auto'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Purely Discrete Systems"
- Configuration Parameters Dialog Box
- Solver Pane

Т

Initial step size

Specify the size of the first time step that the solver takes.

Settings

Default: auto

By default, the solver selects an initial step size by examining the derivatives of the states at the start time.

Tips

- Be careful when increasing the initial step size. If the first step size is too large, the solver might step over important behavior.
- The initial step size parameter is a *suggested* first step size. The solver tries this step size but reduces it if error criteria are not satisfied.

Dependencies

This parameter is enabled only if the solver **Type** is set to Variable-step.

Command-Line Information

Parameter: InitialStep Type: string Value: any valid value Default: 'auto'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Purely Discrete Systems"
- Improving Simulation Performance and Accuracy
- Configuration Parameters Dialog Box
- Solver Pane

Min step size

Specify the smallest time step that the solver can take.

Settings

Default: auto

- The default value (auto) sets an unlimited number of warnings and a minimum step size on the order of machine precision.
- You can specify either a real number greater than zero, or a two-element vector for which the first element is the minimum step size and the second element is the maximum number of minimum step size warnings before an error was issued.

Tips

- If the solver takes a smaller step to meet error tolerances, it issues a warning indicating the current effective relative tolerance.
- Setting the second element to zero results in an error the first time the solver must take a step smaller than the specified minimum. This is equivalent to changing the **Min step size violation** diagnostic to error on the **Diagnostics** pane (see Min step size violation).
- Setting the second element to -1 results in an unlimited number of warnings. This is also the default if the input is a scalar.

Dependencies

This parameter is enabled only if the solver **Type** is set to Variable-step.

Command-Line Information

Parameter: MinStep Type: string Value: any valid value Default: 'auto'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Purely Discrete Systems"
- Min step size violation
- Configuration Parameters Dialog Box
- Solver Pane

T

Relative tolerance

Specify the largest acceptable solver error, relative to the size of each state during each time step. If the relative error exceeds this tolerance, the solver reduces the time step size.

Settings

Default: 1e-3

- Setting the relative tolerance to auto is actually the default value of 1e-3.
- The relative tolerance is a percentage of the state's value.
- The default value (1e-3) means that the computed state is accurate to within 0.1%.

Tips

- The acceptable error at each time step is a function of both the **Relative tolerance** and the **Absolute tolerance**. For more information about how these settings work together, see Specifying Variable-Step Solver Error Tolerances.
- During each time step, the solver computes the state values at the end of the step and also determines the local error the estimated error of these state values. If the error is greater than the acceptable error for any state, the solver reduces the step size and tries again.
- The default relative tolerance value is sufficient for most applications. Decreasing the relative tolerance value can slow down the simulation.
- To check the accuracy of a simulation after you run it, you can reduce the relative tolerance to 1e-4 and run it again. If the results of the two simulations are not significantly different, you can feel confident that the solution has converged.

Dependencies

This parameter is enabled only if you set:

• Solver **Type** to Variable-step.

• Solver to a continuous variable-step solver.

This parameter works along with **Absolute tolerance** to determine the acceptable error at each time step. For more information about how these settings work together, see Specifying Variable-Step Solver Error Tolerances.

Command-Line Information

Parameter: RelTol Type: string Value: any valid value Default: '1e-3'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Specifying Variable-Step Solver Error Tolerances
- Improving Simulation Performance and Accuracy
- Configuration Parameters Dialog Box
- Solver Pane

Absolute tolerance

Specify the largest acceptable solver error, as the value of the measured state approaches zero. If the absolute error exceeds this tolerance, the solver reduces the time step size.

Settings

Default: auto

• The default value (auto) initially sets the absolute tolerance for each state to 1e-6. As the simulation progresses, the absolute tolerance for each state is reset to the maximum value that the state has thus far assumed times the relative tolerance for that state.

For example, if a state goes from 0 to 1 and the **Relative tolerance** is 1e-3, then by the end of the simulation, the **Absolute tolerance** is set to 1e-3.

• If the computed setting is not suitable, you can determine an appropriate setting yourself.

Tips

- The acceptable error at each time step is a function of both the **Relative tolerance** and the **Absolute tolerance**. For more information about how these settings work together, see Specifying Variable-Step Solver Error Tolerances.
- The Integrator, Second-Order Integrator, Variable Transport Delay, Transfer Fcn, State-Space, and Zero-Pole blocks allow you to specify absolute tolerance values for solving the model states that they compute or that determine their output. The absolute tolerance values that you specify in these blocks override the global setting in the Configuration Parameters dialog box.
- You might want to override the **Absolute tolerance** setting using blocks if the global setting does not provide sufficient error control for all of your model states, for example, if they vary widely in magnitude.
- If you set the **Absolute tolerance** too low, the solver might take too many steps around near-zero state values, and thus slow the simulation.

- To check the accuracy of a simulation after you run it, you can reduce the absolute tolerance and run it again. If the results of the two simulations are not significantly different, you can feel confident that the solution has converged.
- If your simulation results do not seem accurate, and your model has states whose values approach zero, the **Absolute tolerance** may be too large. Reduce the **Absolute tolerance** to force the simulation to take more steps around areas of near-zero state values.

Dependencies

This parameter is enabled only if you set:

- Solver **Type** to Variable-step.
- Solver to a continuous variable-step solver.

This parameter works along with **Relative tolerance** to determine the acceptable error at each time step. For more information about how these settings work together, see Specifying Variable-Step Solver Error Tolerances.

Command-Line Information for Configuration Parameters

Parameter: AbsTol Type: string | numeric value Value: 'auto' | positive real scalar Default: 'auto'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Specifying Variable-Step Solver Error Tolerances
- Improving Simulation Performance and Accuracy
- Configuration Parameters Dialog Box
- Solver Pane

Shape preservation

At each time step use derivative information to improve integration accuracy.

Settings

Default: Disable all

```
Disable all
```

Do not perform Shape preservation on any signals.

```
Enable all
```

Perform Shape preservation on all signals.

Tips

- The default setting (Disable all) usually provides good accuracy for most models.
- Setting to Enable all will increase accuracy in those models having signals whose derivative exhibits a high rate of change, but simulation time may be increased.

Dependencies

This parameter is enabled only if you use a continuous-step solver.

Command-Line Information

Parameter: ShapePreserveControl Type: string Value: 'EnableAll | 'DisableAll Default: 'DisableAll

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- "Zero-Crossing Detection"
- Solver Pane

Maximum order

Select the order of the numerical differentiation formulas (NDFs) used in the ode15s solver.

Settings

Default: 5

5

Specifies that the solver uses fifth order NDFs.

1

Specifies that the solver uses first order NDFs.

2

Specifies that the solver uses second order NDFs.

3

Specifies that the solver uses third order NDFs.

4

Specifies that the solver uses fourth order NDFs.

Tips

- Although the higher order formulas are more accurate, they are less stable.
- If your model is stiff and requires more stability, reduce the maximum order to 2 (the highest order for which the NDF formula is A-stable).
- As an alternative, you can try using the ode23s solver, which is a lower order (and A-stable) solver.

Dependencies

This parameter is enabled only if **Solver** is set to ode15s.

Command-Line Information

Parameter: MaxOrder Type: integer Value: 1 | 2 | 3 | 4 | 5 Default: 5

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Specifying Variable-Step Solver Error Tolerances
- Improving Simulation Performance and Accuracy
- Configuration Parameters Dialog Box
- Solver Pane

Solver reset method

Select how the solver behaves during a reset, such as when it detects a zero crossing.

Settings

Default: Fast

Fast

Specifies that the solver will not recompute the Jacobian matrix at a solver reset.

Robust

Specifies that the solver will recompute the Jacobian matrix needed by the integration step at every solver reset.

Tips

- Selecting Fast speeds up the simulation. However, it can result in incorrect solutions in some cases.
- If you suspect that the simulation is giving incorrect results, try the Robust setting. If there is no difference in simulation results between the fast and robust settings, revert to the fast setting.

Dependencies

This parameter is enabled only if you select one of the following solvers:

- ode15s (Stiff/NDF)
- ode23t (Mod. Stiff/Trapezoidal)
- ode23tb (Stiff/TR-BDF2)

Command-Line Information

Parameter: SolverResetMethod Type: string Value: 'Fast' | 'Robust' Default: 'Fast'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Choosing a Solver
- Configuration Parameters Dialog Box
- Solver Pane

Number of consecutive min steps

Specify the maximum number of consecutive minimum step size violations allowed during simulation.

Settings

Default: 1

- A minimum step size violation occurs when a variable-step continuous solver takes a smaller step than that specified by the **Min step size** property (see Min step size).
- Simulink software counts the number of consecutive violations that it detects. If the count exceeds the value of **Number of consecutive min steps**, Simulink software displays either a warning or error message as specified by the **Min step size violation** diagnostic (see Min step size violation).

Dependencies

This parameter is enabled only if you set:

- Solver **Type** to Variable-step.
- **Solver** to a continuous variable step solver.

Command-Line Information

Parameter: MaxConsecutiveMinStep Type: string Value: any valid value Default: '1'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- Choosing a Solver
- Min step size violation
- Min step size
- Configuration Parameters Dialog Box
- Solver Pane

Solver Jacobian Method

Settings

Default: Auto

auto

Sparse perturbation

Full perturbation

Sparse analytical

Full analytical

Tips

• The default setting (Auto) usually provides good accuracy for most models.

Dependencies

This parameter is enabled only if an implicit solver is used.

Command-Line Information

```
Parameter: SolverJacobianMethodControl
Type: string
Value: 'auto' | 'SparsePerturbation' | 'FullPerturbation' |
'SparseAnalytical' |'FullAnalytical'
Default: 'auto'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Choose a Solver"
- Solver Pane

Tasking mode for periodic sample times

Select how blocks with periodic sample times execute.

Settings

Default: Auto

Auto

Specifies that single-tasking execution is used if:

- Your model contains one sample time.
- Your model contains a continuous and a discrete sample time, and the fixed-step size is equal to the discrete sample time.

Selects multitasking execution for models operating at different sample rates.

SingleTasking

Specifies that all blocks are processed through each stage of simulation together (for example, calculating output and updating discrete states).

MultiTasking

Specifies that groups of blocks with the same execution priority are processed through each stage of simulation (for example, calculating output and updating discrete states) based on task priority. Multitasking mode helps to create valid models of real-world multitasking systems, where sections of your model represent concurrent tasks.

Tips

- For multirate models, Simulink treats an Auto setting as a MultiTasking setting.
- A model that is multirate and uses multitasking (that is, uses a setting of Auto or MultiTasking) cannot reference a multirate model that uses a SingleTasking setting.
- The **Multitask rate transition** parameter on the **Diagnostics > Sample Time** pane allows you to adjust error checking for sample rate transitions between blocks that operate at different sample rates.

٠

Dependency

This parameter is enabled by selecting Fixed-step solver type.

Command-Line Information

Parameter: SolverMode
Type: string
Value: 'Auto' | 'SingleTasking' | 'MultiTasking'
Default: 'Auto'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Rate Transition block
- "Model Execution and Rate Transitions"
- "Single-Tasking and Multitasking Execution Modes"
- "Handle Rate Transitions"
- "Single-Tasking and Multitasking Model Execution"
- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Solver Pane" on page 1-9

Automatically handle rate transition for data transfer

Specify whether Simulink software automatically inserts hidden Rate Transition blocks between blocks that have different sample rates to ensure: the integrity of data transfers between tasks; and optional determinism of data transfers for periodic tasks.

Settings

Default: Off

🔽 On

Inserts hidden Rate Transition blocks between blocks when rate transitions are detected. Handles rate transitions for asynchronous and periodic tasks. Simulink software adds the hidden blocks configured to ensure data integrity for data transfers. Selecting this option also enables the parameter **Deterministic data transfer**, which allows you to control the level of data transfer determinism for periodic tasks.

C Off

Does not insert hidden Rate Transition blocks when rate transitions are detected. If Simulink software detects invalid transitions, you must adjust the model such that the sample rates for the blocks in question match or manually add a Rate Transition block.

See Rate Transition Block Options in the Simulink Coder ${}^{\rm TM}$ documentation for further details.

Tips

- Selecting this parameter allows you to handle rate transition issues automatically. This saves you from having to manually insert Rate Transition blocks to avoid invalid rate transitions, including invalid asynchronous-to-periodic and asynchronous-to-asynchronous rate transitions, in multirate models.
- For asynchronous tasks, Simulink software configures the inserted blocks to ensure data integrity but not determinism during data transfers.

Command-Line Information

Parameter: AutoInsertRateTranBlk
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact (for simulation and during development) Off (for production code generation)
Efficiency	No impact
Safety precaution	Off

- Rate Transition Block Options
- Configuration Parameters Dialog Box
- Solver Pane

Deterministic data transfer

Control whether the Rate Transition block parameter **Ensure deterministic data transfer (maximum delay)** is set for auto-inserted Rate Transition blocks

Default: Whenever possible

Always

Specifies that the block parameter **Ensure deterministic data transfer (maximum delay)** is always set for auto-inserted Rate Transition blocks.

If Always is selected and if a model needs to auto-insert a Rate Transition block to handle a rate transition that is *not* between two periodic sample times related by an integer multiple, Simulink errors out.

Whenever possible

Specifies that the block parameter **Ensure deterministic data transfer (maximum delay)** is set for auto-inserted Rate Transition blocks whenever possible. If an auto-inserted Rate Transition block handles data transfer between two periodic sample times that are related by an integer multiple, **Ensure deterministic data transfer (maximum delay)** is set; otherwise, it is cleared.

Never (minimum delay)

Specifies that the block parameter **Ensure deterministic data transfer (maximum delay)** is never set for auto-inserted Rate Transition blocks.

Note Clearing the Rate Transition block parameter **Ensure deterministic data transfer (maximum delay)** can provide reduced latency for models that do not require determinism. See the description of **Ensure deterministic data transfer (maximum delay)** on the Rate Transition block reference page for more information.

Dependencies

This parameter is enabled only if Automatically handle rate transition for data transfer is checked.

Command-Line Information

```
Parameter: InsertRTBMode
Type: string
Value: 'Always' | 'Whenever possible' | 'Never (minimum delay)'
Default: 'Whenever possible'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	'Whenever possible'

- Rate Transition Block Options
- Configuration Parameters Dialog Box
- Solver Pane

Higher priority value indicates higher task priority

Specify whether the real-time system targeted by the model assigns higher or lower priority values to higher priority tasks when implementing asynchronous data transfers

Settings

Default: Off

🔽 On

Real-time system assigns higher priority values to higher priority tasks, for example, 8 has a higher task priority than 4. Rate Transition blocks treat asynchronous transitions between rates with lower priority values and rates with higher priority values as low-to-high rate transitions.

C Off

Real-time system assigns lower priority values to higher priority tasks, for example, 4 has a higher task priority than 8. Rate Transition blocks treat asynchronous transitions between rates with lower priority values and rates with higher priority values as high-to-low rate transitions.

Command-Line Information

```
Parameter: PositivePriorityOrder
Type: string
Value: 'on' | 'off'
Default: 'off'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Rate Transitions and Asynchronous Blocks"
- Configuration Parameters Dialog Box
- Solver Pane

Zero-crossing control

Enables zero-crossing detection during variable-step simulation of the model. For most models, this speeds up simulation by enabling the solver to take larger time steps.

Settings

Default: Use local settings

Use local settings

Specifies that zero-crossing detection be enabled on a block-by-block basis. For a list of applicable blocks, see "Simulating Dynamic Systems"

To specify zero-crossing detection for one of these blocks, open the block's parameter dialog box and select the **Enable zero-crossing detection** option.

Enable all

Enables zero-crossing detection for all blocks in the model.

Disable all

Disables zero-crossing detection for all blocks in the model.

Tips

- For most models, enabling zero-crossing detection speeds up simulation by allowing the solver to take larger time steps.
- If a model has extreme dynamic changes, disabling this option can speed up the simulation but can also decrease the accuracy of simulation results. See Zero-crossing Detection for more information.
- Selecting Enable all or Disable all overrides the local zero-crossing detection setting for individual blocks.

Dependencies

This parameter is enabled only if the solver **Type** is set to Variable-step.

Selecting either Use local settings or Enable all enables the following parameters:

- Time tolerance
- Number of consecutive zero crossings
- Algorithm

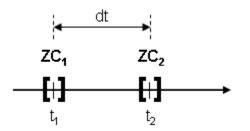
Command-Line Information

```
Parameter: ZeroCrossControl
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Zero-Crossing Detection
- Number of consecutive zero crossings
- Consecutive zero-crossings violation
- Time tolerance
- Configuration Parameters Dialog Box
- Solver Pane


Time tolerance

Specify a tolerance factor that controls how closely zero-crossing events must occur to be considered consecutive.

Settings

Default: 10*128*eps

• Simulink software defines zero crossings as consecutive if the time between events is less than a particular interval. The following figure depicts a simulation timeline during which Simulink software detects zero crossings ZC₁ and ZC₂, bracketed at successive time steps t₁ and t₂.

Simulink software determines that the zero crossings are consecutive if

```
dt < RelTolZC * t_2
```

where dt is the time between zero crossings and RelTolZC is the Time tolerance.

• Simulink software counts the number of consecutive zero crossings that it detects. If the count exceeds the value of **Number of consecutive zero crossings** allowed, Simulink software displays either a warning or error as specified by the **Consecutive zero-crossings violation** diagnostic (see Consecutive zero-crossings violation).

Tips

• Simulink software resets the counter each time it detects nonconsecutive zero crossings (successive zero crossings that fail to meet the relative tolerance setting); therefore, decreasing the relative tolerance value may afford your model's behavior more time to recover.

Т

• If your model experiences excessive zero crossings, you can also increase the **Number of consecutive zero crossings** to increase the threshold at which Simulink software triggers the **Consecutive zero-crossings violation** diagnostic.

Dependencies

This parameter is enabled only if **Zero-crossing control** is set to either Use local settings or Enable all.

Command-Line Information

Parameter: ConsecutiveZCsStepRelTol Type: string Value: any valid value Default: '10*128*eps'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Zero-crossing Detection
- Zero-crossing Control
- Number of consecutive zero crossings
- Consecutive zero-crossings violation
- Configuration Parameters Dialog Box
- Solver Pane

Number of consecutive zero crossings

Specify the number of consecutive zero crossings that can occur before Simulink software displays a warning or an error.

Settings

Default: 1000

- Simulink software counts the number of consecutive zero crossings that it detects. If the count exceeds the specified value, Simulink software displays either a warning or an error as specified by the **Consecutive zero-crossings violation** diagnostic (see Consecutive zero-crossings violation).
- Simulink software defines zero crossings as consecutive if the time between events is less than a particular interval (see Time tolerance).

Tips

- If your model experiences excessive zero crossings, you can increase this parameter to increase the threshold at which Simulink software triggers the **Consecutive zero-crossings violation** diagnostic. This may afford your model's behavior more time to recover.
- Simulink software resets the counter each time it detects nonconsecutive zero crossings; therefore, decreasing the relative tolerance value may also afford your model's behavior more time to recover.

Dependencies

This parameter is enabled only if **Zero-crossing control** is set to either Use local settings or Enable all.

Command-Line Information

Parameter: MaxConsecutiveZCs Type: string Value: any valid value Default: '1000'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Zero-Crossing Detection
- Zero-Crossing Control
- Consecutive zero-crossings violation
- Time tolerance
- Configuration Parameters Dialog Box
- Solver Pane

Algorithm

Specifies the algorithm to detect zero crossings when a variable-step solver is used.

Settings

Default: Nonadaptive

Adaptive

Use an improved zero-crossing algorithm which dynamically activates and deactivates zero-crossing bracketing. With this algorithm you can set a zero-crossing tolerance. See "Signal threshold" on page 1-65 to learn how to set the zero-crossing tolerance.

Nonadaptive

Use the nonadaptive zero-crossing algorithm present in the Simulink software prior to Version 7.0 (R2008a). This option detects zero-crossings accurately, but might cause longer simulation run times for systems with strong "chattering" or Zeno behavior.

Tips

• The adaptive zero-crossing algorithm is especially useful in systems having strong "chattering", or Zeno behavior. In such systems, this algorithm yields shorter simulation run times compared to the nonadaptive algorithm. See Zero-Crossing Detection for more information.

Dependencies

- This parameter is enabled only if the solver **Type** is set to Variable-step.
- Selecting Adaptive enables the Signal threshold parameter.

Command-Line Information

```
Parameter: ZeroCrossAlgorithm
Type: string
Value: 'Nonadaptive' | 'Adaptive'
Default: 'Nonadaptive'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Zero-Crossing Detection
- Number of consecutive zero crossings
- Consecutive zero-crossings violation
- Time tolerance
- Configuration Parameters Dialog Box
- Solver Pane

Signal threshold

Specifies the deadband region used during the detection of zero crossings. Signals falling within this region are defined as having crossed through zero.

The signal threshold is a real number, greater than or equal to zero.

Settings

Default: Auto

Auto

The signal threshold is determined automatically by the adaptive algorithm.

String

Use the specified value for the signal threshold. The value must be a real number equal to or greater than zero.

Tips

- Entering too small of a value for the **Signal Threshold** parameter will result in long simulation run times.
- Entering a large **Signal Threshold** value may improve the simulation speed (especially in systems having extensive chattering). However, making the value too large may reduce the simulation accuracy.

Dependency

This parameter is enabled if the zero-crossing Algorithm is set to Adaptive.

Command-Line Information

Parameter: ZCThreshold Type: string Value: 'auto' | any real number greater than or equal to zero Default: 'auto'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Zero-Crossing Detection
- Number of consecutive zero crossings
- Consecutive zero-crossings violation
- Time tolerance
- Configuration Parameters Dialog Box
- Solver Pane

Periodic sample time constraint

Select constraints on the sample times defined by this model. If the model does not satisfy the specified constraints during simulation, Simulink software displays an error message.

Settings

Default: Unconstrained

Unconstrained

Specifies no constraints. Selecting this option causes Simulink software to display a field for entering the solver step size.

Use the **Fixed-step size (fundamental sample time)** option to specify solver step size.

Ensure sample time independent

Specifies that Model blocks inherit sample time from the context in which they are used. You cannot use a referenced model that has intrinsic sample times in a triggered subsystem or iterator subsystem. If you plan on referencing this model in a triggered or iterator subsystem, you should select Ensure sample time independent so that Simulink can detect sample time problems while unit testing this model.

- Model Block Sample Times
- Inherited Sample Time for Referenced Models
- "Function-Call Models"

Simulink software checks to ensure that this model can inherit its sample times from a model that references it without altering its behavior. Models that specify a step size (i.e., a base sample time) cannot satisfy this constraint. For this reason, selecting this option causes Simulink software to hide the group's step size field (see Fixed-step size (fundamental sample time)).

Specified

Specifies that Simulink software check to ensure that this model operates at a specified set of prioritized periodic sample times. Use the **Sample time properties** option to specify and assign priorities to model sample times. Executing Multitasking Models explains how to use this option for multitasking models.

Tips

During simulation, Simulink software checks to ensure that the model satisfies the constraints. If the model does not satisfy the specified constraint, then Simulink software displays an error message.

Dependencies

This parameter is enabled only if the solver **Type** is set to Fixed-step.

Selecting Unconstrained enables the following parameters:

- Fixed-step size (fundamental sample time)
- Tasking mode for periodic sample times
- Higher priority value indicates higher task priority
- Automatically handle rate transitions for data transfers

Selecting Specified enables the following parameters:

- Sample time properties
- Tasking mode for periodic sample times
- Higher priority value indicates higher task priority
- Automatically handle rate transitions for data transfers

Command-Line Information

Parameter: SampleTimeConstraint
Type: string
Value: 'unconstrained' | 'STIndependent' | 'Specified'
Default: 'unconstrained'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Specified or Ensure sample time independent

- Model Block Sample Times
- Inherited Sample Time for Referenced Models
- "Function-Call Models"
- Fixed-step size (fundamental sample time)
- Executing Multitasking Models
- Configuration Parameters Dialog Box
- Solver Pane

Fixed-step size (fundamental sample time)

Specify the step size used by the selected fixed-step solver.

Settings

Default: auto

- Entering **auto** (the default) in this field causes Simulink software to choose the step size.
- If the model specifies one or more periodic sample times, Simulink software chooses a step size equal to the least common denominator of the specified sample times. This step size, known as the fundamental sample time of the model, ensures that the solver will take a step at every sample time defined by the model.
- If the model does not define any periodic sample times, Simulink software chooses a step size that divides the total simulation time into 50 equal steps.

Dependencies

This parameter is enabled only if the **Periodic sample time constraint** is set to Unconstrained.

Command-Line Information

Parameter: FixedStep Type: string Value: any valid value Default: 'auto'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Modeling Dynamic Systems
- Configuration Parameters Dialog Box
- Solver Pane

Sample time properties

Specify and assign priorities to the sample times that this model implements.

Settings

No Default

- Enter an Nx3 matrix with rows that specify the model's discrete sample time properties in order from fastest rate to slowest rate.
- Faster sample times must have higher priorities.

Format.

[period, offset, priority]

period	The time interval (sample rate) at which updates occur during the simulation.
offset	A time interval indicating an update delay. The block is updated later in the sample interval than other blocks operating at the same sample rate.
priority	Execution priority of the real-time task associated with the sample rate.

See Specifying Sample Time for more details and options for specifying sample time.

Example.

[[0.1, 0, 10]; [0.2, 0, 11]; [0.3, 0, 12]]

- Declares that the model should specify three sample times.
- Sets the fundamental sample time period to 0.1 second.
- Assigns priorities of 10, 11, and 12 to the sample times.
- Assumes higher priority values indicate lower priorities the **Higher priority value indicates higher task priority** option is not selected.

Tips

- If the model's fundamental rate differs from the fastest rate specified by the model, specify the fundamental rate as the first entry in the matrix followed by the specified rates, in order from fastest to slowest. See "Purely Discrete Systems".
- If the model operates at one rate, enter the rate as a three-element vector in this field for example, [0.1, 0, 10].
- When you update a model, Simulink software displays an error message if what you specify does not match the sample times defined by the model.
- If **Periodic sample time constraint** is set to Unconstrained, Simulink software assigns priority 40 to the model base sample rate. If **Higher priority value indicates higher task priority** is selected, Simulink software assigns priorities 39, 38, 37, and so on, to subrates of the base rate. Otherwise, it assigns priorities 41, 42, 43, and so on, to the subrates.
- Continuous rate is assigned a higher priority than is the discrete base rate regardless of whether **Periodic sample time constraint** is **Specified** or **Unconstrained**.

Dependencies

This parameter is enabled by selecting Specified from the **Periodic sample** time constraint list.

Command-Line Information

Parameter: SampleTimeProperty Type: structure Value: any valid matrix Default: []

Note If you specify SampleTimeProperty at the command line, you must enter the sample time properties as a structure with the following fields:

- SampleTime
- Offset
- Priority

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Period, offset, and priority of each sample time in the model; faster sample times must have higher priority than slower sample times

- "Purely Discrete Systems"
- Specifying Sample Time
- Configuration Parameters Dialog Box
- Solver Pane

Extrapolation order

Select the extrapolation order used by the ode14x solver to compute a model's states at the next time step from the states at the current time step.

Settings

Default: 4

1

Specifies first order extrapolation.

2

Specifies second order extrapolation.

3

Specifies third order extrapolation.

4

Specifies fourth order extrapolation.

Tip

Selecting a higher order produces a more accurate solution, but is more computationally intensive per step size.

Dependencies

This parameter is enabled by selecting ode14x (extrapolation) from the ${\bf Solver}$ list.

Command-Line Information

Parameter: ExtrapolationOrder Type: integer Value: 1 | 2 | 3 | 4 Default: 4

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Choosing a Fixed-Step Solver
- Configuration Parameters Dialog Box
- Solver Pane

Number Newton's iterations

Specify the number of Newton's method iterations used by the ode14x solver to compute a model's states at the next time step from the states at the current time step.

Settings

Default: 1 **Minimum:** 1 **Maximum:** 2147483647

More iterations produce a more accurate solution, but are more computationally intensive per step size.

Dependencies

This parameter is enabled by selecting ode14x (extrapolation) from the ${\bf Solver}$ list.

Command-Line Information

Parameter: NumberNewtonIterations Type: integer Value: any valid number Default: 1

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Choosing a Fixed-Step Solver
- Configuration Parameters Dialog Box
- Solver Pane
- "Purely Discrete Systems"

Allow tasks to execute concurrently on target

Enable concurrent tasking behavior for model.

Settings

Default: On

🗹 On

Enable the model to be configured for concurrent tasking.

C Off

Disable the model from being configured for concurrent tasking.

Tip.

- If the referenced mode has a single rate, you do not need to select this check box to enable concurrent tasking behavior.
- To remove this parameter, in the Model Explorer right-click and select Configuration > Hide Concurrent Execution options.

Dependencies. This parameter check box is visible only if you convert an existing configuration set to one for concurrent execution. To enable this parameter, in the Model Explorer hierarchy pane, right-click and select **Configuration > Show Concurrent Execution options**. The **Dialog** pane is displayed with the **Allow tasks to execute concurrently on target** check box and a **Configure Tasks** button.

- If this parameter check box is selected when you click the **Configure Tasks** button, the Concurrent Execution dialog box is displayed.
- If this parameter check box is cleared, the following parameters are enabled:
 - Periodic sample time constraint
 - Tasking mode for periodic sample times
 - Automatically handle rate transition for data transfer
 - Higher priority value indicates higher task priority

• To make this parameter check box and button visible with the command-line information, set the EnableConcurrentExecution to 'on'. By default, this parameter is set to 'off'.

Command-Line Information

```
Parameter: ConcurrentTasks
Type: string
Value: 'on' | 'off'
Default: 'on'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	0.0

- "Concurrent Execution Window: Main Pane" on page 6-2
- Configuration Parameters Dialog Box
- Solver Pane

Data Import/Export Pane

Configuration Parameters: vdp/C	Configuration (Active)				3
Select:	Load from workspace			Â	
Solver	Input: Edit Input Edit Input				
Data Import/Export Optimization Diagnostics	Initial state:				
Hardware Implementation Model Referencing ▷ Simulation Target	Save to workspace	ıt			
Code Generation	Time:	tout	Format:	Array 🔹	
	States:	xout	Limit data points to last:	1000	
	Output:	yout	Decimation:	1	
	Final states:	xFinal	Save complete SimState	in final state	Е
	Signals ☑ Signal logging: Configure Signal	logsout s to Log	Signal logging format: ModelDataLogs 🔻		
Data Store Memory Data stores: dsmout Save options					
	Output options: Refine output				
		output as single object	out		
			Ŧ		
0			ОК	Cancel Help Apply	

In this section... "Data Import/Export Overview" on page 1-83 "Input" on page 1-84 "Initial state" on page 1-86 "Time" on page 1-88 "States" on page 1-90

In this section
"Output" on page 1-92
"Final states" on page 1-94
"Format" on page 1-96
"Limit data points to last" on page 1-98
"Decimation" on page 1-100
"Save complete SimState in final state" on page 1-102
"Signal logging" on page 1-104
"Signal logging format" on page 1-107
"Data stores" on page 1-110
"Output options" on page 1-112
"Refine factor" on page 1-114
"Output times" on page 1-116
"Save simulation output as single object" on page 1-117
"Record and inspect simulation output" on page 1-120

Data Import/Export Overview

The Data Import/Export pane allows you to import input signal and initial state data from a workspace and export output signal and state data to the MATLAB[®] workspace during simulation. This capability allows you to use standard or custom MATLAB functions to generate a simulated system's input signals and to graph, analyze, or otherwise postprocess the system's outputs.

Configuration

- **1** Specify the data to load from a workspace before simulation begins.
- **2** Specify the data to save to the MATLAB workspace after simulation completes.

Tips

- To open the Data Import/Export pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Data Import/Export.
- For more information importing and exporting data, see "Import Data" and "Export Runtime Information".
- See the documentation of the sim command for some capabilities that are available only for programmatic simulation.

- Importing Data from a Workspace
- "Export Simulation Data"
- "Export Signal Data Using Signal Logging"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Input

Loads input data from a workspace before the simulation begins.

Settings

Default: Off, [t,u]

🔽 On

Loads data from a workspace.

Specify a MATLAB expression for the data to be imported from a workspace. The Simulink software resolves symbols used in this specification as described in "Symbol Resolution".

See "Import Data to Root-Level Input Ports" for information on how to use this field.

C Off

Does not load data from a workspace.

- You must select the Input check box before entering input data.
- Simulink software linearly interpolates or extrapolates input values as necessary if the **Interpolate data** option is selected for the corresponding Inport.
- The use of the **Input** box is independent of the setting of the **Format** list on the **Data Import/Export** pane.

Command-Line Information

Parameter: LoadExternalInput
Type: string
Value: 'on' | 'off'
Default: 'off'

Parameter: ExternalInput Type: string Value: any valid value Default: '[t,u]'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Import Data to Root-Level Input Ports"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Initial state

Loads the model's initial states from a workspace before simulation begins.

Settings

Default: Off, xInitial

🔽 On

Simulink software loads initial states from a workspace.

Specify the name of a variable that contains the initial state values, for example, a variable containing states saved from a previous simulation.

Use the structure or structure-with-time option to specify initial states if you want to accomplish any of the following:

- Associate initial state values directly with the full path name to the states. This eliminates errors that could occur if Simulink software reorders the states, but the initial state array is not correspondingly reordered.
- Assign a different data type to each state's initial value.
- Initialize only a subset of the states.

See "Import and Export States" for more information.

C Off

Simulink software does not load initial states from a workspace.

- You must select the **Initial state** check box before entering initial state data.
- The initial values that the workspace variable specifies override the initial values that the model specifies (the values that the initial condition parameters of those blocks in the model that have states specify).
- Use either the structure format or structure-with-time format to initialize the states of a top model and the models that it references.

• Selecting the **Initial state** check box does not result in Simulink initializing discrete states in referenced models.

Command-Line Information

Parameter: LoadInitialState
Type: string
Value: 'on' | 'off'
Default: 'off'

Parameter: InitialState Type: variable (string) or vector Value: any valid value Default: 'xInitial'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- Importing Data from a Workspace
- "Import and Export States"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Т

Time

Saves simulation time data to the specified variable during simulation.

Settings

Default: On, tout

🔽 On

Simulink software exports time data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store time data. See "Export Simulation Data" for more information.

C Off

Simulink software does not export time data to the MATLAB workspace during simulation.

Tips

- You must select the **Time** check box before entering the time variable.
- Simulink software saves the output to the MATLAB workspace at the base sample rate of the model. Use a To Workspace block if you want to save output at a different sample rate.
- The **Time**, **State**, **Output** area includes parameters for specifying a limit on the number of data points to export and the decimation factor.

Command-Line Information

Parameter: SaveTime Type: string Value: 'on' | 'off' Default: 'on'

Parameter: TimeSaveName Type: string Value: any valid value Default: 'tout'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Export Simulation Data"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

States

Saves state data to the specified MATLAB variable during a simulation.

Settings

Default: Off, xout

🔽 On

Simulink software exports state data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store state data. See Importing and Exporting States for more information.

C Off

Simulink does not export state data during simulation.

- You must select the **States** check box before entering the states variable.
- Simulink saves the states in a MATLAB workspace variable having the specified name.
- The saved data has the format that you specify with the **Format** parameter.
- If you select the **States** check box, Simulink does not log fixed-point states.
- Simulink creates empty variables for state logging (xout) if both of these conditions apply:
 - You enable States.
 - A model has no states.
- See "Import and Export States" for more information.

Command-Line Information

Parameter: SaveState Type: string Value: 'on' | 'off' Default: 'off'

Parameter: StateSaveName Type: string Value: any valid value Default: 'xout'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- Importing and Exporting States
- "Techniques for Importing Signal Data"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Output

Saves signal data to the specified MATLAB variable during simulation.

Settings

Default: On, yout

🔽 On

Simulink software exports signal data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store signal data. See "Export Simulation Data" for more information.

C Off

Simulink software does not export signal data during simulation.

- You must select the **Output** check box before entering the output variable.
- Simulink software saves the output to the MATLAB workspace at the base sample rate of the model. Use a To Workspace block if you want to save output at a different sample rate.
- The **Time**, **State**, **Output** area includes parameters for specifying the format and other characteristics of the saved data (for example, the format for the saved data and the decimation factor).
- If you select the **Output** check box, Simulink logs fixed-point data as double. To log fixed-point data, consider using one of these approaches:
 - Signal logging Right-click the signal and in the Properties dialog box, select Log signal. For details, see "Export Signal Data Using Signal Logging".
 - To File block
 - To Workspace block In the To Workspace block parameters dialog box, enable the **Log fixed-point data as a fi object** parameter.
- For multiple names, use a comma-separated list (for example, yout1, yout2).

Command-Line Information

Parameter: SaveOutput Type: string Value: 'on' | 'off' Default: 'on'

Parameter: OutputSaveName Type: string Value: any valid value Default: 'yout'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Export Simulation Data"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Final states

Saves the logged states of the model at the end of a simulation to the specified MATLAB variable.

Settings

Default: Off, xFinal

🔽 On

Simulink software exports final logged state data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable in which to store the values of these final states. See Importing and Exporting States for more information.

C Off

Simulink software does not export the final state data during simulation.

- You must select the **Final states** check box before entering the final states variable.
- Simulink software saves the final states in a MATLAB workspace variable having the specified name.
- The saved data has the format that you specify with the **Format** parameter.
- Simulink creates empty variables for final state logging (xfinal) if both of these conditions apply:
 - You enable **Final states**.
 - A model has no states.
- See "Import and Export States" for more information.

Command-Line Information

Parameter: SaveFinalState
Type: string
Value: 'on' | 'off'
Default: 'off'

Parameter: FinalStateName Type: string Value: any valid value Default: 'xFinal'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- Importing and Exporting States
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Format

Select the data format for saving states, output, and final states data.

Settings

Default: Array

Array

The format of the data is a matrix each row of which corresponds to a simulation time step.

Structure

For logging output, the format of the data is a structure that contains substructures for each port. Each port substructure contains signal data for the corresponding port. For logging states, the structure contains a substructure for each block that has a state.

Structure with time

The format of the data is a structure that has two fields: a time field and a signals field. The time field contains a vector of simulation times. The signals field contains same data as for the Structure format.

- You can use array format to save your model's outputs and states only if the outputs are either all scalars or all vectors (or all matrices for states), are either all real or all complex, and are all of the same data type. Use the Structure or Structure with time output formats (see Structure with time) if your model's outputs and states do not meet these conditions.
- If you enable the **Save complete SimState in final state** parameter, then the format does not apply to final states data.
- Simulink software can read back simulation data saved to the workspace in the Structure with time output format. See "Import Data to Root-Level Input Ports" for more information.
- See "State and Output Data Format".
- To specify the format for signal logging data, use the **Signal logging format** parameter.

Command-Line Information

```
Parameter: SaveFormat
Type: string
Value: 'Array' | 'Structure' | 'StructureWithTime'
Default: 'Array'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Export Simulation Data"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Limit data points to last

Limit the number of data points to export to the MATLAB workspace.

Settings

Default: On, 1000

🔽 On

Limits the number of data points exported to the MATLAB workspace to the number that you specify.

Specify the maximum number of data points to export to the MATLAB workspace. At the end of the simulation, the MATLAB workspace contains the last N points generated by the simulation.

C Off

Does not limit the number of data points.

Tips

- You must select the **Limit data points to last** check box before specifying the number of data points.
- Saving data to the MATLAB workspace can slow down the simulation and consume memory. Use this parameter to limit the number of samples saved to help avoid this problem.
- You can also apply a **Decimation** factor to skip a selected number of samples.

Command-Line Information

Parameter: LimitDataPoints Type: string Value: 'on' | 'off' Default: 'on'

Parameter: MaxDataPoints Type: string Value: any valid value **Default:** '1000'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Export Simulation Data"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Т

Decimation

Specify that Simulink software output only every N points, where N is the specified decimation factor.

Settings

Default: 1

- The default value (1) specifies that all data points are saved.
- Simulink software outputs data only at the specified number of data points. For example, specifying 2 saves every other data point, while specifying 10 saves just one in ten data points.
- At the end of the simulation, the total number of data points is reduced by the factor specified.

Tips

- Saving data to the MATLAB workspace can slow down the simulation and consume memory. Use this parameter to limit the number of samples saved to help avoid this problem.
- You can also use the **Limit data points to last** parameter to help resolve this problem.

Command-Line Information

Parameter: Decimation Type: string Value: any valid value Default: '1'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Export Simulation Data"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Save complete SimState in final state

At the end of a simulation, Simulink saves the complete set of states of the model, including logged states, to the specified MATLAB variable.

Settings

Default: Off, xFinal

🔽 On

Simulink software exports the complete set of final state data (i.e., the SimState) to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable in which to store the values of the final states. See Importing and Exporting States for more information.

```
C Off
```

Simulink software exports the final logged states during simulation.

Tips

- You must select the **Final states** check box to enable the **Save complete SimState in final state** option.
- Simulink saves the final states in a MATLAB workspace variable having the specified name.

Dependencies

This parameter is enabled by Final states.

Command-Line Information

Parameter: SaveCompleteFinalSimState Type: string Value: 'on' | 'off' Default: 'off'

Parameter: FinalStateName Type: string

Value: any valid value **Default:** 'xFinal'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Importing and Exporting States
- Configuration Parameters Dialog Box
- Data Import/Export Pane
- "Limitations of the SimState"

Signal logging

Globally enable or disable signal logging for this model.

Settings

Default: On, logsout

🔽 On

Enables signal logging to the MATLAB workspace during simulation.

Specify the name of the signal logging object used to record logged signal data in the MATLAB workspace. For more information, see "Specify a Name for the Signal Logging Data".

C Off

Disables signal logging to the MATLAB workspace during simulation.

- You must select the **Signal logging** check box before entering the signal logging variable.
- Simulink saves the signal data in a MATLAB workspace variable having the specified name.
- The saved data has the format that you specify with the **Signal logging format** parameter.
- Simulink does not support signal logging for the following types of signals:
 - Output of a Function-Call Generator block
 - Signal connected to the input of a Merge block
 - Outputs of Trigger and Enable blocks
- If you select **Signal logging**, you can use the **Configure Signals to Log** button to open the Signal Logging Selector. You can use the Signal Logging Selector to:
 - Review all signals in a model hierarchy that are configured for logging
 - Override signal logging settings for specific signals

 Control signal logging throughout a model reference hierarchy in a more streamlined way than in previous releases

For details about the Signal Logging Selector, see "Use Signal Logging Selector to View Signal Logging Configuration" and "Override Signal Logging Settings".

Dependencies

This parameter enables:

- Signal logging format
- The Configure Signals to Log button

Command-Line Information

Parameter: SignalLogging Type: string Value: 'on' | 'off' Default: 'on'

Parameter: SignalLoggingName Type: string Value: any valid value Default: 'logsout'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation or during development Off for production code generation

- "Export Signal Data Using Signal Logging"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Signal logging format

Specify format for signal logging data for this model.

Settings

Default: Dataset

Dataset

Simulink uses a Simulink.SimulationData.Dataset object to store the logged signal data and MATLAB timeseries objects for formatting the data.

ModelDataLogs

Simulink uses a Simulink.ModelDataLogs object to store the logged signal data. Simulink.Timeseries and Simulink.TsArray objects provide the format for the data.

This setting is supported for backward compatibility. Prior to R2012b, the default signal logging format was ModelDataLogs. The ModelDataLogs format will be removed in a future release. For an existing model that uses the ModelDataLogs format, you should migrate the model to use Dataset format. For details, see "Migrate from ModelDataLogs to Dataset Format".

Tips

- You must select **Signal logging** before specifying the signal logging format.
- The Dataset format:
 - Uses MATLAB timeseries objects to store logged data (rather than Simulink.Timeseries and Simulink.TsArray objects). MATLAB timeseries objects allow you to work with logging data in MATLAB without a Simulink license.
 - Supports logging multiple data values for a given time step, which can be important for Iterator subsystem and Stateflow signal logging
 - Provides an easy to analyze format for logged signal data for models with deep hierarchies, bus signals, and signals with duplicate or invalid names

- Avoids the limitations of the ModelDataLogs format. For example, for a virtual bus, logging only logs one of multiple signals that share the same source block. See Bug Report 495436 for a description of the ModelDataLogs limitations.
- Simulink checks signal logging data format consistency for certain model referencing configurations. For details, see "Model Reference Signal Logging Format Consistency". You can use the Upgrade Advisor (with the upgradeadvisor function) to upgrade a model to use Dataset format.
- An alternative approach for handling reported inconsistencies is to use the Simulink.SimulationData.updateDatasetFormatLogging function to update the models to use Dataset format. This approach sets the Model Configuration Parameters > Data Import/Export > Signal logging format parameter to Dataset for each referenced model and each variant.
- If you have logged signal data in the ModelDataLogs format, you can use the Simulink.ModelDataLogs.convertToDataset function to convert the ModelDataLogs data to Dataset format.
- Dataset format is required to log array of buses data.

Simulink uses the Simulink.SimulationData.Dataset data format for logging data stores.

For additional information about specifying the signal logging format, see "Specify the Signal Logging Data Format".

Command-Line Information

Parameter: SignalLoggingSaveFormat Type: string Value: 'Dataset' | 'ModelDataLogs' Default: 'Dataset'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Export Signal Data Using Signal Logging"
- "Specify the Signal Logging Data Format"
- Configuration Parameters Dialog Box
- Data Import/Export Pane
- Simulink.ModelDataLogs
- Simulink.SimulationData.Dataset

Т

Data stores

Globally enable or disable logging of Data Store Memory block variables for this model.

Settings

Default: On, dsmsout

🔽 On

Enables data store logging to the MATLAB workspace during simulation.

Specify the name of the data store logging object to use for recording logged data store data. The data store logging object must be in the MATLAB workspace.

C Off

Disables data store logging to the MATLAB workspace during simulation.

Tips

- Simulink saves the data in a MATLAB workspace variable having the specified name.
- The saved data has the Simulink.SimulationData.Dataset format.
- See "Supported Data Types, Dimensions, and Complexity for Logging Data Stores" "Data Store Logging Limitations" and "Data Store Logging Limitations".

Dependencies. Select the **Data stores** check box before entering the data store logging variable.

Command-Line Information

Parameter: DSMLogging Type: string Value: 'on' | 'off' Default: 'on' Parameter: DSMLoggingName Type: string Value: any valid value Default: 'dsmOut'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Log Data Stores"
- "Export Signal Data Using Signal Logging"
- Configuration Parameters Dialog Box
- Data Import/Export Pane
- Simulink.SimulationData.DataStoreMemory
- Data Store Memory

Output options

Select options for generating additional output signal data for variable-step solvers.

Settings

Default: Refine output

Refine output

Generates data output between, as well as at, simulation times steps. Use **Refine factor** to specify the number of points to generate between simulation time steps. For more information, see "Refine Output".

Produce additional output

Generates additional output at specified times. Use **Output times** to specify the simulation times at which Simulink software generates additional output.

Produce specified output only

Use **Output times** to specify the simulation times at which Simulink generates output, in addition to the simulation start and stop times.

Tips

- These settings can force the solver to calculate output values for times that it would otherwise have omitted because the calculations were not needed to achieve accurate simulation results. These extra calculations can cause the solver to locate zero crossings that it would otherwise have missed.
- For additional information on how Simulink software calculates outputs for these three options, see "Samples to Export for Variable-Step Solvers".

Dependencies

This parameter is enabled only if the model specifies a variable-step solver (see Solver Type).

Selecting Refine output enables the Refine factor parameter.

Selecting Produce additional output or Produce specified output only enables the **Output times** parameter.

Command-Line Information

```
Parameter: OutputOption
Type: string
Value: 'RefineOutputTimes' | 'AdditionalOutputTimes' |
'SpecifiedOutputTimes'
Default: 'RefineOutputTimes'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Output Options"
- Refine factor
- "Refine Output"
- "Export Simulation Data"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Refine factor

Specify how many points to generate between time steps to refine the output.

Settings

Default: 1

- The default refine factor is 1, meaning that no extra data points are generated.
- A refine factor of 2 provides output midway between the time steps, as well as at the steps.

Tip

Simulink software ignores this option for discrete models. This is because the value of data between time steps is undefined for discrete models.

Dependency

This parameter is enabled only if you select Refine output as the value of **Output options**.

Command-Line Information

Parameter: Refine Type: string Value: any valid value Default: '1'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Refine Output"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Output times

Specify times at which Simulink software should generate output in addition to, or instead of, the times of the simulation steps taken by the solver used to simulate the model.

Settings

Default: []

- Enter a matrix containing the times at which Simulink software should generate output in addition to, or instead of, the simulation steps taken by the solver.
- If the value of **Output options** is **Produce additional output**, for the default value [], Simulink generates no additional data points.
- If the value of **Output options** is **Produce specified output only**, for the default value [] Simulink generates no data points.

Tips

- The Produce additional output option generates output at the specified times, as well as at the regular simulation steps.
- The Produce specified output only option generates output at the specified times.
- Discrete models define outputs only at major time steps. Therefore, Simulink software logs output for discrete models only at major time steps. If the **Output times** field specifies other times, Simulink displays a warning at the MATLAB command line.
- For additional information on how Simulink software calculates outputs for the Output options Produce specified output only and Produce additional outputoptions, see "Samples to Export for Variable-Step Solvers".

Dependency

This parameter is enabled only if the value of **Output options** is **Produce** additional output or **Produce** specified output only.

Command-Line Information

Parameter: OutputTimes Type: string Value: any valid value Default: '[]'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

See Also

- "Refine Output"
- Configuration Parameters Dialog Box
- Data Import/Export Pane

Save simulation output as single object

Enable the single-output format of the sim command.

Settings

Default: off

• Turning this option 'on' causes Simulink to return all simulation outputs within a single Simulink.SimulationOutput object, providing that you simulate by choosing **Simulation** > **Start** from the model window.

- When turning this option 'on', you must specify the variable name of the single output object which will contain the simulation outputs. Use the text field next to the check box to specify this name.
- Enabling this option makes the sim command compatible with the parfor command, in terms of transparency issues.

Tips

- If you select this option and you simulate by entering the sim command at the command line of the MATLAB command window, then the output variables will not be stored in the object 'out'. Instead, they will be stored in their respective variable names. This design is necessary to avoid workspace issues when sim is called from within a parfor loop.
- The method who of the Simulink.SimulationOutput object returns the list of variables that the object contains.
- Use the get method of the Simulink.SimulationOutput object to access the variables that the object contains.

Command-Line Information

Parameter: ReturnWorkspaceOutputs
Type: string
Value: 'on' | 'off' |
Default: 'off'

Parameter: ReturnWorkspaceOutputsName Type: string Value: Any valid value Default: 'Out'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Data Import/Export Pane" on page 1-81
- "Run Simulation Using the sim Command"
- "Run Parallel Simulations"

Т

Record and inspect simulation output

Specify whether Simulink software records logged signals during simulation.

Settings

Default: Off

🔽 On

Simulink records logged signals during simulation. In the Simulink Editor toolbar, this setting turns the **Record** button on. After Simulink records a simulation, a notification bar appears in the Simulink Editor. In the notification bar, click the link to open the Simulation Data Inspector. The simulation data automatically appears in the Signal Browser table.

C Off

Simulink does not record logged signals during simulation. In the Simulink Editor toolbar, this setting turns the **Record** button off.

Tip

To open the Simulation Data Inspector, in the Simulink Editor toolbar, click the **Record** button arrow and select Simulation Data Inspector.

Command-Line Information

Parameter: InspectSignalLogs Type: string Value: 'on' | 'off' Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact for simulation and during development Off for production code generation

- "Signal Logging"
- "Record Simulation Data"
- "Inspect Signal Data"
- "Customize the Simulation Data Inspector Interface"

Optimization Pane: General

The **Optimization > General** pane includes the following parameters:

Simulation and code generation		
Image: Second state Image: Second state Image: Second state Image: Second state		
Implement logic signals as Boolean data (vs. double) Application lifespan (days) inf		
Use integer division to handle net slopes that are reciprocals of integers		
Use floating-point multiplication to handle net slope corrections		
Default for underspecified data type: double		
Code generation		
Data initialization		
✓ Use memset to initialize floats and doubles to 0.0		
Integer and fixed-point		
Remove code from floating-point to integer conversions that wraps out-of-range values		
Remove code from floating-point to integer conversions with saturation that maps NaN to zero		
Accelerating simulations		
Compiler optimization level: Optimizations off (faster builds)		
Verbose accelerator builds		

In this section...

"Optimization Pane: General Tab Overview" on page 1-124

"Block reduction" on page 1-125

"Conditional input branch execution" on page 1-129

"Implement logic signals as Boolean data (vs. double)" on page 1-132

"Application lifespan (days)" on page 1-134

In this section...

"Use integer division to handle net slopes that are reciprocals of integers" on page 1-137

"Use floating-point multiplication to handle net slope corrections" on page 1-139

"Default for underspecified data type" on page 1-141

"Optimize using the specified minimum and maximum values" on page 1-143

"Remove root level I/O zero initialization" on page 1-147

"Use memset to initialize floats and doubles to 0.0" on page 1-149

"Remove internal data zero initialization" on page 1-151

"Optimize initialization code for model reference" on page 1-153

"Remove code from floating-point to integer conversions that wraps out-of-range values" on page 1-155

"Remove code from floating-point to integer conversions with saturation that maps NaN to zero" on page 1-157

"Remove code that protects against division arithmetic exceptions" on page 1-159

"Compiler optimization level" on page 1-161

"Verbose accelerator builds" on page 1-163

Optimization Pane: General Tab Overview

Set up optimizations for a model's active configuration set. Optimizations are set for both simulation and code generation.

Tips

- To open the Optimization pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Optimization.
- Simulink Coder optimizations appear only when the Simulink Coder product is installed on your system. Selecting a GRT-based or ERT-based system target file changes the available options. ERT-based target optimizations require a Embedded Coder[®] license when generating code. See the **Dependencies** sections below for licensing information for each parameter.

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- "Perform Acceleration"
- For code generation, see "Performance"

Block reduction

Reduce execution time by collapsing or removing groups of blocks.

Settings

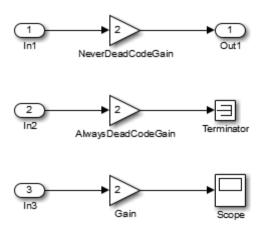
Default: On

🗹 On

Simulink software searches for and reduces the following block patterns:

- **Redundant type conversions** Unnecessary type conversion blocks, such as an int type conversion block with an input and output of type int.
- **Dead code** Blocks or signals in an unused code path.
- **Fast-to-slow Rate Transition block in a single-tasking system** Rate Transition blocks with an input frequency faster than its output frequency.

C Off


Simulink software does not search for block patterns that can be optimized. Simulation and generated code are not optimized.

Tips

- When you select **Block reduction**, Simulink software collapses certain groups of blocks into a single, more efficient block, or removes them entirely. This results in faster execution during model simulation and in generated code.
- Block reduction does not change the appearance of the source model.
- Tunable parameters do not prevent a block from being reduced by dead code elimination.
- Once block reduction takes place, Simulink software does not display the sorted order for blocks that have been removed.
- If you have a Simulink Coder license, block reduction is intended to remove only the generated code that represents execution of a block. Other supporting data, such as definitions for sample time and data types might remain in the generated code.

Dead Code Elimination. Any blocks or signals in an *unused code path* are eliminated from generated code.

- The following conditions need to be met for a block to be considered part of an unused code path:
 - All signal paths for the block end with a block that does not execute. Examples of blocks that do not execute include Terminator blocks, disabled Assertion blocks, S-Function blocks configured for block reduction, and To Workspace blocks when MAT-file logging is disabled for code generation.
 - No signal paths for the block include global signal storage downstream from the block.
- Tunable parameters do not prevent a block from being reduced by dead code elimination.

• Consider the signal paths in the following block diagram.

If you check **Block reduction**, Simulink Coder software responds to each signal path as follows:

For Signal Path	Simulink Coder Software
In1 to Out1	Always generates code because dead code elimination conditions are not met.
In2 to Terminator	Never generates code because dead code elimination conditions are met.
In3 to Scope	Generates code if MAT-file logging is enabled and eliminates code if MAT-file logging is disabled.

Command-Line Information

Parameter: BlockReduction Type: string Value: 'on' | 'off' Default: 'on'

Recommended Settings

Application	Setting
Debugging	Off (for simulation and during development) No impact (for production code generation)
Traceability	Off
Efficiency	On
Safety precaution	Off

- "Single-Tasking and Multitasking Execution Modes"
- "Single-Tasking and Multitasking Model Execution"
- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122

• For code generation, see "Performance"

Conditional input branch execution

Improve model execution when the model contains Switch and Multiport Switch blocks.

Settings

Default: On

🔽 On

Executes only the blocks required to compute the control input and the data input selected by the control input. This optimization speeds execution of code generated from the model. Limits to Switch block optimization:

- Only blocks with -1 (inherited) or inf (Constant) sample time can participate.
- Blocks with outputs flagged as test points cannot participate.
- No multirate block can participate.
- Blocks with states cannot participate.
- Only S-functions with option SS_OPTION_CAN_BE_CALLED_CONDITIONALLY set can participate.

🗖 Off

Executes all blocks driving the Switch block input ports at each time step.

Command-Line Information

Parameter: ConditionallyExecuteInputs
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	On
Efficiency	On (execution), No impact (ROM, RAM)
Safety precaution	No impact

- "Minimize Computations and Storage for Intermediate Results"
- "Conditional Execution Behavior"
- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- For code generation, see "Performance"

Implement logic signals as Boolean data (vs. double)

Controls the output data type of blocks that generate logic signals.

Settings

Default: On

🗹 On

Blocks that generate logic signals output a signal of **boolean** data type. This reduces the memory requirements of generated code.

🗖 Off

Blocks that generate logic signals output a signal of double data type. This ensures compatibility with models created by earlier versions of Simulink software.

Tips

- Setting this option **on** reduces the memory requirements of generated code, because a Boolean signal typically requires one byte of storage compared to eight bytes for a double signal.
- Setting this option **off** allows the current version of Simulink software to run models that were created by earlier versions of Simulink software that supported only signals of type double.
- This optimization affects the following blocks:
 - Logical Operator block This parameter affects only those Logical Operator blocks whose Output data type parameter specifies Inherit: Logical (see Configuration Parameters: Optimization). If this parameter is selected, such blocks output a signal of boolean data type; otherwise, such blocks output a signal of double data type.
 - Relational Operator block This parameter affects only those Relational Operator blocks whose Output data type parameter specifies Inherit: Logical (see Configuration Parameters: Optimization). If this parameter is selected, such blocks output a signal of boolean data type; otherwise, such blocks output a signal of double data type.

- Combinatorial Logic block If this parameter is selected, Combinatorial Logic blocks output a signal of boolean data type; otherwise, they output a signal of double data type. See Combinatorial Logic in the *Simulink Reference* for an exception to this rule.
- Hit Crossing block If this parameter is selected, Hit Crossing blocks output a signal of boolean data type; otherwise, they output a signal of double data type.

Dependencies

• This parameter is disabled for models created with a version of Simulink software that supports only signals of type double.

Command-Line Information

```
Parameter: BooleanDataType
Type: string
Value: 'on' | 'off'
Default: 'on'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On
Safety precaution	On

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- For code generation, see "Performance"

Application lifespan (days)

Specify how long (in days) an application that contains blocks depending on elapsed or absolute time should be able to execute before timer overflow.

Settings

Default: inf **Min:** Must be greater than zero **Max:** inf

Enter a positive (nonzero) scalar value (for example, 0.5) or inf.

If you are licensed for the Embedded Coder product and select an ERT target for your model, the default value for **Application lifespan (days)** is 1.

This parameter is ignored when you are operating your model in external mode, have **Mat-file logging** enabled, or have a continuous sample time because a 64 bit timer is required in these cases.

Tips

- Specifying a lifespan, along with the simulation step size, determines the data type used by blocks to store absolute time values.
- For simulation, setting this parameter to a value greater than the simulation time will ensure time does not overflow.
- Simulink software evaluates this parameter first against the model workspace. If this does not resolve the parameter, Simulink software then evaluates it against the base workspace.
- The Application lifespan also determines the word size used by timers in the generated code, which can lower RAM usage. For more information, see Timing Services in the Simulink Coder documentation.
- Application lifespan, when combined with the step size of each task, determines the data type used for integer absolute time for each task, as follows:
 - If your model does not require absolute time, this option affects neither simulation nor the generated code.

- If your model requires absolute time, this option optimizes the word size used for storing integer absolute time in generated code. This ensures that timers do not overflow within the lifespan you specify. If you set Application lifespan to inf, two uint32 words are used.
- If your model contains fixed-point blocks that require absolute time, this option affects both simulation and generated code.

For example, using 64 bits to store timing data enables models with a step size of 0.001 microsecond (10E-09 seconds) to run for more than 500 years, which would rarely be required. To run a model with a step size of one millisecond (0.001 seconds) for one day would require a 32-bit timer (but it could continue running for 49 days).

- A timer will allocate 64 bits of memory if you specify a value of inf.
- To minimize the amount of RAM used by time counters, specify a lifespan no longer than necessary.
- Must be the same for top and referenced models.
- Optimize the size of counters used to compute absolute and elapsed time.

Command-Line Information

Parameter: LifeSpan Type: string Value: positive (nonzero) scalar value or inf Default: 'inf'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Finite value
Safety precaution	inf

- "About Scheduling"
- "Use Timers in Asynchronous Tasks"
- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- For code generation, see "Performance"

Use integer division to handle net slopes that are reciprocals of integers

The Fixed-Point Designer[™] software performs net slope correction using integer division to handle net slopes that are reciprocals of integers when simplicity and accuracy conditions are met.

Settings

Default: Off

🗹 On

Perform net slope correction using integer division when simplicity and accuracy conditions are met.

C Off

Perform net slope correction using integer multiplication followed by shifts.

Tips

- This optimization affects both simulation and code generation.
- When a change of fixed-point slope is not a power of two, net slope correction is necessary. Normally, net slope correction uses an integer multiplication followed by shifts. Enabling this new optimization replaces the multiplication and shifts with an integer division under certain simplicity and accuracy conditions.
- Performing net slope correction using integer division is not always more efficient than using multiplication followed by shifts. Ensure that the target hardware supports efficient division.
- To ensure that this optimization occurs, you must:
 - Set the word length of the block to ensure that the software can perform division using the production target long data type. This avoids using multiword operations.
 - Set the Signed integer division rounds to configuration parameter setting on the Hardware Implementation > Production hardware subpane to Zero or Floor. The optimization does not occur if this parameter is set to Undefined.

1

 Set the Integer rounding mode parameter of the block to Simplest or to the value of the Signed integer division rounds to configuration parameter setting on the Hardware Implementation > Production hardware subpane.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter: UseIntDivNetSlope Type: string Value: 'on' | 'off' Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On (when target hardware supports efficient division) Off (otherwise)
Safety precaution	No impact

- Use Integer Division for Net Slope Correction
- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122

Use floating-point multiplication to handle net slope corrections

The Fixed-Point Designer software uses floating-point multiplication to perform net slope correction for floating-point to fixed-point casts.

Settings

Default: Off

🗹 On

Use floating-point multiplication to perform net slope correction for floating-point to fixed-point casts.

C Off

Use division to perform net slope correction for floating-point to fixed-point casts.

Tips

- This optimization affects both simulation and code generation.
- When converting from floating point to fixed point, if the net slope is not a power of two, slope correction using division improves precision. For some processors, use of multiplication improves code efficiency.

Dependencies

• This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter: UseFloatMulNetSlope
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On (when target hardware supports efficient multiplication) Off (otherwise)
Safety precaution	Off

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122

Default for underspecified data type

Specify the default data type to use for inherited data types if Simulink software could not infer the data type of a signal during data type propagation.

Settings

Default: double

double

Sets the data type for underspecified data types during data type propagation to double. Simulink uses double as the data type for inherited data types.

single

Sets the data type for underspecified data types during data type propagation to single. Simulink uses single as the data type for inherited data types.

Tips

- This setting affects both simulation and code generation.
- For embedded designs that target single-precision processors, set this parameter to single to avoid the introduction of double data types.
- Use the Model Advisor Identify questionable operations for strict single-precision design check to identify the double-precision usage in your model..

Command-Line Information

Parameter: DefaultUnderspecifiedDataType
Type: string
Value: 'double' | 'single'
Default: 'double'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On (when target hardware supports efficient single computations) Off (otherwise)
Safety precaution	No impact

- "Identify questionable operations for strict single-precision design"
- "Validate a Single-Precision Model"

Optimize using the specified minimum and maximum values

Optimize generated code using the specified minimum and maximum values for signals and parameters in the model.

Settings

Default: Off

🔽 On

Optimizes the generated code using range information derived from the minimum and maximum specified values for signals and parameters in the model.

C Off

Ignores specified minimum and maximum values when generating code.

Tips

- Before generating code, test the specified values by simulating your model with simulation range checking enabled using the **Diagnostics > Data Validity > Simulation range checking** configuration parameter. If errors or warnings occur, fix these issues before generating code. Otherwise, optimization might result in numerical mismatch with simulation.
- Specify minimum and maximum values for signals and parameters in the model for:
 - Inport and Outport blocks.
 - Block outputs.
 - Block inputs, for example, for the MATLAB Function and Stateflow Chart blocks.
 - Simulink.Signal objects.
- This optimization does not take into account minimum and maximum values specified for:
 - Merge block inputs. To work around this, use a Simulink.Signal object on the Merge block output and specify the range on this object

- Bus elements.
- Conditionally-executed subsystem (such as a triggered subsystem) block outputs that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial value specified for use only when the system is not triggered. In this case, the optimization cannot use the range of the block output because the range might not cover the initial value of the block.

• If you use the Polyspace[®] Code Prover[™]software to verify code generated using this optimization, it might mark code that was previously green as orange. For example, if your model contains a division where the range of the denominator does not include zero, the generated code does not include protection against division by zero. Polyspace Code Prover might mark this code orange because it does not have information about the minimum and maximum values specified for the inputs to the division.

The Polyspace Code Prover software does automatically capture some minimum and maximum values specified in the MATLAB workspace, for example, for Simulink.Signal and Simulink.Parameter objects. In this example, to provide range information to the Polyspace Code Prover software, use a Simulink.Signal object on the input of the division and specify a range that does not include zero.

The Polyspace Code Prover software stores these values in a Data Range Specification (DRS) file. However, they do not capture all minimum and maximum values specified in your Simulink model. To provide additional min/max information to Polyspace Code Prover, you can manually define a DRS file. For more information, see the Polyspace Code Prover documentation.

- If you are using double-precision data types and the **Code Generation** > **Interface** > **Support non-finite numbers** configuration parameter is selected, this optimization does not occur.
- If your model contains multiple instances of a reusable subsystem and each instance uses input signals with different specified minimum and maximum values, this optimization might result in different generated code for each subsystem so code reuse does not occur. Without this optimization, the Simulink Coder software generates code once for the subsystem and shares this code among the multiple instances of the subsystem.

- The Model Advisor **Check safety-related optimization settings** check generates a warning if this option is selected. For many safety critical applications, it is not acceptable to remove dead code automatically because this might result in requirements without traceable code. For more information, see Check safety-related optimization settings.
- Enabling this optimization improves the ability of the Fixed-Point Designer software to eliminate unnecessary utility functions and saturation code from the generated code.

Dependencies

- This parameter appears for ERT-based targets only.
- This parameter requires a Embedded Coder license when generating code.

Command-Line Information

```
Parameter: UseSpecifiedMinMax
Type: string
Value: 'on' | 'off'
Default: 'off'
```

Recommended Settings

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	On
Safety precaution	Off

See Also

• "Optimize Generated Code Using Specified Minimum and Maximum Values"

• "Optimize Generated Code Using Specified Minimum and Maximum Values" in the Fixed-Point Designer documentation.

Remove root level I/O zero initialization

Specify whether to generate initialization code for root-level inports and outports set to zero.

Settings

Default: Off (GUI), 'on' (command-line)

🔽 On

Does not generate initialization code for root-level inports and outports set to zero.

🗖 Off

Generates initialization code for all root-level inports and outports. Use the default:

- To initialize memory allocated for C MEX S-function wrappers to zero.
- To initialize all internal and external data to zero.

Note Generated code never initializes data of ImportedExtern or ImportedExternPointer storage classes, regardless of configuration parameter settings.

Dependencies

- This parameter appears only for ERT-based targets.
- This parameter requires a Embedded Coder license when generating code.

Command-Line Information

```
Parameter: ZeroExternalMemoryAtStartup
Type: string
Value: 'off' | 'on'
Default: 'on'
```

Note The command-line values are reverse of the settings values. Therefore, 'on' in the command line corresponds to the description of "Off" in the settings section, and 'off' in the command line corresponds to the description of "On" in the settings section.

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On (GUI), off (command line) (execution, ROM), No impact (RAM)
Safety precaution	Off (GUI), on (command line)

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- For code generation, see "Performance"

Use memset to initialize floats and doubles to 0.0

Specify whether to generate code that explicitly initializes floating-point data to 0.0.

Settings

Default: On (GUI), 'off' (command-line)

🔽 On

Uses memset to clear internal storage for floating-point data to integer bit pattern 0 (all bits 0), regardless of type. An example of a case for selecting this option is to gain compiler efficiency when the compiler and target CPU both represent floating-point zero with the integer bit pattern 0.

C Off

Generates code to explicitly initialize storage for data of types float and double to 0.0. The resulting code is slightly less efficient than code generated when you select the option.

You should not select this option if you need to ensure that memory allocated for C MEX S-function wrappers is initialized to zero.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: InitFltsAndDblsToZero Type: string Value: 'on' | 'off' Default: 'off'

Note The command-line values are reverse of the settings values. Therefore, 'on' in the command line corresponds to the description of "Off" in the settings section, and 'off' in the command line corresponds to the description of "On" in the settings section.

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On (GUI), 'off' (command-line) (execution, ROM), No impact (RAM)
Safety precaution	No impact

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- For code generation, see "Performance"

Remove internal data zero initialization

Specify whether to generate initialization code for internal work structures, such as block states and block outputs, to zero.

Settings

Default: Off (GUI), 'on' (command-line)

🔽 On

Does not generate code that initializes internal work structures to zero. An example of when you might select this parameter is to test the behavior of a design during warm boot—a restart without full system reinitialization.

Selecting this parameter does not guarantee that memory is in a known state each time the generated code begins execution. When you run a model or generated S-function multiple times, each run can produce a different answer, even when calling the model initialization function in an attempt to reset memory.

If want to get the same answer on every run from a generated S-function, enter the command clear *SFcnNam* or clear mex in the MATLAB Command Window before each run.

C Off

Generates code that initializes internal work structures to zero. You should use the default:

- To ensure that memory allocated for C MEX S-function wrappers is initialized to zero
- For safety critical applications that require that all internal and external data be initialized to zero

Dependencies

- This parameter appears only for ERT-based targets.
- This parameter requires a Embedded Coder license when generating code.

Command-Line Information

```
Parameter: ZeroInternalMemoryAtStartup
Type: string
Value: 'off' | 'on'
Default: 'on'
```

Note The command-line values are reverse of the settings values. Therefore, 'on' in the command line corresponds to the description of "Off" in the settings section, and 'off' in the command line corresponds to the description of "On" in the settings section.

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On (GUI), off (command line), (execution, ROM), No impact (RAM)
Safety precaution	Off (GUI), on (command line)

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- For code generation, see "Performance"

Optimize initialization code for model reference

Specify whether to generate initialization code for blocks that have states.

Settings

Default: on

🗹 On

Suppresses generation of initialization code for blocks that have states unless the blocks are in a system that can reset its states, such as an enabled subsystem. This results in more efficient code.

C Off

Generates initialization code for all blocks that have states. Disable this option if the current model includes a subsystem that resets states, such as an enabled subsystem, and the model is referred to from another model with a Model block.

Tips

The following restrictions apply to using the **Optimize initialization code for model reference** parameter. However, these restrictions do not apply to a Model block that references a function-call model.

- In a subsystem that resets states, do not include a Model block that references a model that has this parameter set to on. For example, in an enabled subsystem with the **States when enabling** block parameter set to reset, do not include a Model block that references a model that has the **Optimize initialization code for model reference** parameter set to on.
- If you set the **Optimize initialization code for model reference** parameter to off in a model that includes a Model block that directly references a model, do not set the **Optimize initialization code for model reference** parameter for the referenced model to on.

Dependencies

- This parameter appears only for ERT-based targets.
- This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: OptimizeModelRefInitCode
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On (execution, ROM), No impact (RAM)
Safety precaution	No impact

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- For code generation, see "Performance"

Remove code from floating-point to integer conversions that wraps out-of-range values

Remove wrapping code that handles out-of-range floating-point to integer conversion results.

Settings

Default: Off

Removes code when out-of-range conversions occur. Select this check box if code efficiency is critical to your application and the following conditions are true for at least one block in the model:

- Computing the outputs or parameters of a block involves converting floating-point data to integer or fixed-point data.
- The **Saturate on integer overflow** check box is cleared in the Block Parameters dialog box.

Caution Execution of generated code might not produce the same results as simulation.

C Off

Results for simulation and execution of generated code match when out-of-range conversions occur. The generated code is larger than when you select this check box.

Tips

- Selecting this check box reduces the size and increases the speed of the generated code at the cost of potentially producing results that do not match simulation in the case of out-of-range values.
- Selecting this check box affects code generation results only for out-of-range values and cannot cause code generation results to differ from simulation results for in-range values.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: EfficientFloat2IntCast
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	On (execution, ROM), No impact (RAM)
Safety precaution	Off (for simulation and during development) On (for production code generation)

- Removing Code That Wraps Out-of-Range Values
- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122

Remove code from floating-point to integer conversions with saturation that maps NaN to zero

Remove code that handles floating-point to integer conversion results for NaN values.

Settings

Default: On

🗹 On

Removes code when mapping from NaN to integer zero occurs. Select this check box if code efficiency is critical to your application and the following conditions are true for at least one block in the model:

- Computing outputs or parameters of a block involves converting floating-point data to integer or fixed-point data.
- The **Saturate on integer overflow** check box is selected in the Block Parameters dialog box.

Caution Execution of generated code might not produce the same results as simulation.

C Off

Results for simulation and execution of generated code match when mapping from NaN to integer zero occurs. The generated code is larger than when you select this check box.

Tips

- Selecting this check box reduces the size and increases the speed of the generated code at the cost of producing results that do not match simulation in the case of NaN values.
- Selecting this check box affects code generation results only for NaN values and cannot cause code generation results to differ from simulation results for any other values.

Dependencies

- This parameter requires a Simulink Coder license.
- For ERT-based targets, this parameter is enabled when you select the **floating-point numbers** and **non-finite numbers** check boxes in the **Code Generation > Interface** pane.

Command-Line Information

```
Parameter: EfficientMapNaN2IntZero
Type: string
Value: 'on' | 'off'
Default: 'on'
```

Recommended Settings

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	On
Safety precaution	Off (for simulation and during development) On (for production code generation)

- Removing Code That Maps NaN Values to Integer Zero
- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122

Remove code that protects against division arithmetic exceptions

Specify whether to generate code that guards against division by zero for fixed-point data.

Settings

Default: On

Does not generate code that guards against division by zero for fixed-point data. When you select this option, simulation results and results from generated code might not be in bit-for-bit agreement.

```
C Off
```

Generates code that guards against division by zero for fixed-point data.

Dependencies

- This parameter appears only for ERT-based targets.
- This parameter requires a Embedded Coder license when generating code.

Command-Line Information

```
Parameter: NoFixptDivByZeroProtection
Type: string
Value: 'on' | 'off'
Default: 'on'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	On
Safety precaution	Off

- "Configuration Parameters Dialog Box Overview" on page 1-3
- "Optimization Pane: General" on page 1-122
- For code generation, see "Performance"

Compiler optimization level

Sets the degree of optimization used by the compiler when generating code for acceleration.

Settings

Default: Optimizations off (faster builds)

```
Optimizations off (faster builds)
```

Specifies the compiler not to optimize code. This results in faster build times.

```
Optimizations on (faster runs)
```

Specifies the compiler to generate optimized code. The generated code will run faster, but the model build will take longer than if optimizations are off.

Tips

- The default Optimizations off is a good choice for most models. This quickly produces code that can be used with acceleration.
- Set Optimizations on to optimize your code. The fast running code produced by optimization can be advantageous if you will repeatedly run your model with the accelerator.

Command-Line Information

Parameter: SimCompilerOptimization
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- "Acceleration"
- "Interact with the Acceleration Modes Programmatically"
- "Customize the Acceleration Build Process"

Verbose accelerator builds

Select the amount of information displayed during code generation for Simulink Accelerator mode, referenced model Accelerator mode, and Rapid Accelerator mode.

Settings

Default: Off

🗖 Off

Display limited amount of information during the code generation process.

🗹 On

Display progress information during code generation, and show the compiler options in use.

Command-Line Information

Parameter: AccelVerboseBuild Type: string Value: 'on' | 'off' Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

See Also

For more information about AccelVerboseBuild, see "Controlling Verbosity During Code Generation".

Optimization Pane: Signals and Parameters

The **Optimization > Signals and Parameters** pane includes the following parameters:

Simulation and code generation		
Configure	Signal storage reuse	
Code generation		
✓ Enable local block outputs	Reuse block outputs	
\fbox Eliminate superfluous local variables (expression folding)	Inline invariant signals	
$\ensuremath{\fbox{\ensuremath{\square}}}$ Minimize data copies between local and global variables	Simplify array indexing	
✓ Use memcpy for vector assignment	Memcpy threshold (bytes): 64	
Pack Boolean data into bitfields		
Loop unrolling threshold: 5	Maximum stack size (bytes): Inherit from target 👻	
Pass reusable subsystem outputs as: Structure reference	▼	
Parameter structure: Hierarchical	▼	

In this section	
"Optimization Pane: Signals and Parameters Tab Overview" on page 1-166	
"Inline parameters" on page 1-166	
"Signal storage reuse" on page 1-170	
"Enable local block outputs" on page 1-172	
"Reuse block outputs" on page 1-174	
"Eliminate superfluous local variables (Expression folding)" on page 1-177	
"Inline invariant signals" on page 1-180	
"Minimize data copies between local and global variables" on page 1-182	
"Simplify array indexing" on page 1-184	
"Use memcpy for vector assignment" on page 1-186	
"Memcpy threshold (bytes)" on page 1-188	

In this section...

"Pack Boolean data into bitfields" on page 1-190

"Bitfield declarator type specifier" on page 1-192

"Loop unrolling threshold" on page $1\mathchar`-194$

"Maximum stack size (bytes)" on page 1-196

"Pass reusable subsystem outputs as" on page 1-198

"Parameter structure" on page 1-200

"Model Parameter Configuration Dialog Box" on page 1-202

Optimization Pane: Signals and Parameters Tab Overview

Set up optimizations for a model's active configuration set.

Tips

- To open the Optimization: Signals and Parameters pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Optimization > Signals and Parameters.
- Simulink Coder optimizations appear only when the Simulink Coder product is installed on your system. Selecting a GRT-based or ERT-based system target file changes the available options. ERT-based target optimizations require a Embedded Coder license when generating code. See the **Dependencies** sections below for licensing information for each parameter.

See Also

- "Optimization Pane: Signals and Parameters" on page 1-164
- "Configuration Parameters Dialog Box Overview" on page 1-3
- For code generation, see "Performance"

Inline parameters

Transform tunable parameters into constant values.

Settings

Default: Off

🗹 On

Selecting Inline parameters has the following effects:

• If you have a Simulink Coder license, the software uses the numerical values of model parameters, instead of their symbolic names, in generated code.

- Reduces global RAM usage, because parameters are not declared in the global parameters structure.
- Enables the **Configure** button. Clicking the **Configure** button opens the Model Parameter Configuration dialog box.

C Off

Uses symbolic names for model parameters in generated code.

Tips

• Simulink software allows you to override the **Inline parameters** option for parameters whose values are defined by variables in the MATLAB workspace. To specify that such a parameter remain tunable, specify the parameter as global in the Model Parameter Configuration dialog box (see Model Parameter Configuration Dialog Box). To display the dialog box, click the adjacent **Configure** button.

Note Simulink ignores tunable parameter specifications in the Model Parameter Configuration dialog box if the model is a referenced model or contains any Model blocks. Do not use this dialog box to override the inline parameters optimization for selected parameters to permit them to be tuned. Instead, see "Parameterize Model References" for alternate techniques.

- To tune a global parameter, change the value of the corresponding workspace variable and select **Update Diagram (Ctrl+D)** from the Simulink **Simulation** menu.
- You cannot tune inline parameters in code generated from a model. However, when simulating a model, you can tune an inline parameter if its value derives from a workspace variable. For example, suppose that a model has a Gain block whose **Gain** parameter is inline and equals **a**, where **a** is a variable defined in the model's workspace. When simulating the model, Simulink software disables the **Gain** parameter field, preventing you from using the block's dialog box to change the gain. However, you can still tune the gain by changing the value of **a** at the MATLAB command line and updating the diagram.

- When a top model uses referenced models or if a model is referenced by another model:
 - All referenced models must set Inline parameters to on.
 - The top model can specify **Inline parameters** to be on or off.

See Inline Parameter Requirements for more information.

- If your model contains an Environment Controller block, you can suppress code generation for the branch connected to the Sim port if you select **Inline parameters** and the branch does not contain external signals.
- Simulink Scope and Signal Viewer blocks with Constant and Ground blocks If you turn on inline parameters, the value of a Constant or Ground block does not change during the simulation. The constant value is determined before a simulation and plotted on a scope graph as a single point. To see a scope trace, change the sample time for a Constant or Ground block from inf to a value.

Dependencies

This parameter enables:

- Configure button
- "Parameter structure" on page 1-200
- "Inline invariant signals" on page 1-180

Command-Line Information

Parameter: InlineParams Type: string Value: 'on' | 'off' Default: 'off'

Recommended	Settings
-------------	-----------------

Application	Setting
Debugging	Off (for simulation and during development) On (for production code generation)
Traceability	On
Efficiency	On
Safety precaution	No impact

- Model Parameter Configuration Dialog Box
- Parameter Storage, Interfacing, and Tuning
- Model Referencing Inline Parameters
- Configuration Parameters Dialog Box
- Optimization Pane
- "Inline Parameters"

Signal storage reuse

Reuse signal memory.

Settings

Default: On

🗹 On

Simulink software reuses memory buffers allocated to store block input and output signals, reducing the memory requirement of your real-time program.

🗖 Off

Simulink software allocates a separate memory buffer for each block's outputs. This makes all block outputs global and unique, which in many cases significantly increases RAM and ROM usage.

Tips

- This option applies only to signals with storage class Auto.
- Signal storage reuse can occur only among signals that have the same data type.
- Clearing this option can substantially increase the amount of memory required to simulate large models.
- Clear this option if you need to:
 - Debug a C-MEX S-function
 - Use a Floating Scope or a Display block with the **Floating display** option selected to inspect signals in a model that you are debugging
- Simulink software opens an error dialog if **Signal storage reuse** is enabled and you attempt to use a Floating Scope or floating Display block to display a signal whose buffer has been reused.

Dependencies

This parameter enables:

• "Enable local block outputs" on page 1-172

- "Reuse block outputs" on page 1-174
- "Eliminate superfluous local variables (Expression folding)" on page 1-177
- "Minimize data copies between local and global variables" on page 1-182

Command-Line Information

```
Parameter:OptimizeBlockIOStorage
Type: string
Value: 'on' | 'off'
Default: 'on'
```

Recommended Settings

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	On
Safety precaution	No impact

- Signal Storage, Optimization, and Interfacing
- Optimizing a Model for Code Generation
- Configuration Parameters Dialog Box
- Optimization Pane

Enable local block outputs

Specify whether block signals are declared locally or globally.

Settings

Default: On

🗹 On

Block signals are declared locally in functions.

Block signals are declared globally.

Tips

- If it is not possible to declare an output as a local variable, the generated code declares the output as a global variable.
- If you are constrained by limited stack space, you can turn **Enable local block outputs** off and still benefit from memory reuse.

Dependencies

- This parameter requires a Simulink Coder license.
- This parameter is enabled by **Signal storage reuse**.

Command-Line Information

Parameter: LocalBlockOutputs Type: string Value: 'on' | 'off' Default: 'on'

Recommended Settings

Application	Setting
Debugging	Off
Traceability	No impact
Efficiency	On
Safety precaution	No impact

- Signal Storage, Optimization, and Interfacing
- Signals with Auto Storage Class
- Optimizing a Model for Code Generation
- Configuration Parameters Dialog Box
- Optimization Pane

Reuse block outputs

Specify whether Simulink Coder software reuses signal memory.

Settings

Default: On

🗹 On

- Simulink Coder software reuses signal memory whenever possible, reducing stack size where signals are being buffered in local variables.
- Selecting this parameter trades code traceability for code efficiency.

C Off

Signals are stored in unique locations.

Dependencies

- This parameter requires a Simulink Coder license.
- This parameter is enabled by **Signal storage reuse**.

Command-Line Information

```
Parameter: BufferReuse
Type: string
Value: 'on' | 'off'
Default: 'on'
```

Recommended Settings

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	On
Safety precaution	No impact

- Signal Storage, Optimization, and Interfacing
- Signals with Auto Storage Class
- Optimizing a Model for Code Generation
- Configuration Parameters Dialog Box
- Optimization Pane

Eliminate superfluous local variables (Expression folding)

Collapse block computations into single expressions.

Settings

Default: On

🗹 On

- Enables expression folding.
- Eliminates local variables, incorporating the information into the main code statement.
- Improves code readability and efficiency.

C Off

Disables expression folding.

Dependencies

- This parameter requires a Simulink Coder license.
- This parameter is enabled by **Signal storage reuse**.

Command-Line Information

Parameter: ExpressionFolding Type: string Value: 'on' | 'off' Default: 'on'

Application	Setting
Debugging	Off
Traceability	No impact (for simulation and during development) Off (for production code generation)
Efficiency	On
Safety precaution	No impact

- Expression Folding
- Optimizing a Model for Code Generation
- Configuration Parameters Dialog Box
- Optimization Pane

Т

Inline invariant signals

Transform symbolic names of invariant signals into constant values.

Settings

Default: Off

🗹 On

Simulink Coder software uses the numerical values of model parameters, instead of their symbolic names, in generated code. An invariant signal is not inline if it is nonscalar, complex, or the block inport the signal is attached to takes the address of the signal.

🗖 Off

Uses symbolic names of model parameters in generated code.

Dependencies

- This parameter requires a Simulink Coder license.
- This parameter is enabled by Inline parameters.

Command-Line Information

```
Parameter: InlineInvariantSignals
Type: string
Value: 'on' | 'off'
Default: 'off'
```

Recommended Settings

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	On
Safety precaution	No impact

See Also

Inlining Invariant Signals

Minimize data copies between local and global variables

Reuse existing global variables to store temporary results.

Settings

Default: Off

🔽 On

Writes data for block outputs to global variables, reducing RAM consumption and execution time.

C Off

Writes data for block outputs to local variables.

Dependencies

- This parameter requires a Simulink Coder license.
- This parameter is enabled by "Signal storage reuse" on page 1-170.

Command-Line Information

Parameter: EnhancedBackFolding Type: string Value: 'on' | 'off' Default: 'off'

Recommended Settings

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	On (execution, ROM, RAM)
Safety precaution	No impact

- "Signals"
- Configuration Parameters Dialog Box
- Optimization Pane
- For code generation, see "Performance"

Simplify array indexing

Replace multiply operations in array indices when accessing arrays in a loop.

Settings

Default: Off

🔽 On

In array indices, replace multiply operations with add operations when accessing arrays in a loop in the generated code. When the original signal is multidimensional, the Embedded Coder generates one-dimensional arrays, resulting in multiply operations in the array indices. Using this setting eliminates costly multiply operations when accessing arrays in a loop in the C/C++ program. This optimization (commonly referred to as strength reduction) is particularly useful if the C/C++ compiler on the target platform does not have similar functionality. No appearance of multiply operations in the C/C++ program does not imply that the C/C++ compiler does not generate multiply instructions.

C Off

Leave multiply operations in array indices when accessing arrays in a loop.

Dependencies

This parameter:

- Requires a Embedded Coder license to generate code.
- Appears only for ERT-based targets.

Command-Line Information

Parameter: StrengthReduction Type: string Value: 'on' | 'off' Default: 'off'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Simplify Multiply Operations In Array Indexing"
- Configuration Parameters Dialog Box
- Optimization Pane

Use memcpy for vector assignment

Optimize code generated for vector assignment by replacing for loops with memcpy.

Settings

Default: On

🗹 On

Enables use of memcpy for vector assignment based on the associated threshold parameter **Memcpy threshold (bytes)**. memcpy is used in the generated code if the number of array elements times the number of bytes per element is greater than or equal to the specified value for **Memcpy threshold (bytes)**. One byte equals the width of a character in this context.

🗖 Off

Disables use of memcpy for vector assignment.

Dependencies

- This parameter requires a Simulink Coder license.
- When selected, this parameter enables the associated parameter **Memcpy** threshold (bytes).

Command-Line Information

Parameter: EnableMemcpy Type: string Value: 'on' | 'off' Default: 'on'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	On
Safety precaution	No impact

- "Optimize Code Generated for Vector Assignments"
- Optimizing a Model for Code Generation
- Configuration Parameters Dialog Box
- Optimization Pane

Memcpy threshold (bytes)

Specify the minimum array size in bytes for which memcpy function calls should replace for loops in the generated code for vector assignments.

Settings

Default: 64

Specify the array size, in bytes, at which the code generator begins to use memcpy instead of for loops for vector assignments.

Dependencies

- This parameter requires a Simulink Coder license.
- This parameter is enabled when you select **Use memcpy for vector assignment**.

Command-Line Information

Parameter: MemcpyThreshold Type: integer Value: any valid quantity of bytes Default: 64

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Accept default or determine target-specific optimal value
Safety precaution	No impact

- "Optimize Code Generated for Vector Assignments"
- Optimizing a Model for Code Generation
- Configuration Parameters Dialog Box
- Optimization Pane

Pack Boolean data into bitfields

Specify whether Boolean signals are stored as one-bit bitfields or as a Boolean data type.

Note You cannot use this optimization when you generate code for a target that specifies an explicit structure alignment.

Settings

Default: Off

Stores Boolean signals into one-bit bitfields in global block I/O structures or DWork vectors. This will reduce RAM, but might cause more executable code.

C Off

Stores Boolean signals as a Boolean data type in global block I/O structures or DWork vectors.

Dependencies

This parameter:

- Requires a Embedded Coder license.
- Appears only for ERT-based targets.

Command-Line Information

Parameter: BooleansAsBitfields Type: string Value: 'on' | 'off' Default: 'off'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Off (execution, ROM), On (RAM)
Safety precaution	No impact

- "Optimization Pane: General" on page 1-122
- "Bitfield declarator type specifier" on page 1-192

Bitfield declarator type specifier

Specify the bitfield type when selecting configuration parameter "Pack Boolean data into bitfields" on page 1-190.

Note The optimization benefit is dependent upon your choice of target.

Settings

Default: uint_T

🗹 uint T

The type specified for a bitfield declaration is an unsigned int.

```
🗖 uchar_T
```

The type specified for a bitfield declaration is an unsigned char.

Tip

The "Pack Boolean data into bitfields" on page 1-190 configuration parameter default setting uses unsigned integers. This might cause an increase in RAM if the bitfields are small and distributed. In this case, uchar_T might use less RAM depending on your target.

Dependency

Pack Boolean data into bitfields enables this parameter.

Command-Line Information

Parameter: BitfieldContainerType
Type: string
Value: uint_T | uchar_T
Default: uint T

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target dependent
Safety precaution	No impact

See Also

"Pack Boolean data into bitfields" on page 1-190

Loop unrolling threshold

Specify the minimum signal or parameter width for which a for loop is generated.

Settings

Default: 5

Specify the array size at which the code generator begins to use a for loop instead of separate assignment statements to assign values to the elements of a signal or parameter array.

When there are perfectly nested loops, the code generator uses a for loop if the product of the loop counts for all loops in the perfect loop nest is greater than or equal to the threshold.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: RollThreshold Type: string Value: any valid value Default: '5'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	>0
Safety precaution	>1

- Configuring a Loop Unrolling Threshold
- "Target Language Compiler"

Maximum stack size (bytes)

Specify the maximum stack size in bytes for your model.

Settings

Default:Inherit from target

Inherit from target

The Simulink Coder software assigns the maximum stack size to the smaller value of the following:

- The default value (200,000 bytes) set by the Simulink Coder software
- Value of the TLC variable MaxStackSize in the system target file

<Specify a value>

Specify a positive integer value. Simulink Coder software assigns the maximum stack size to the specified value.

Note If you specify a maximum stack size for a model, the estimated required stack size of a referenced model must be less than the specified maximum stack size of the parent model.

Tips

- If you specify the maximum stack size to be zero, then the generated code implements all variables as global data.
- If you specify the maximum stack to be inf, then the generated code contains the least number of global variables.

Command-Line Information

Parameter: MaxStackSize Type: int Value: Any valid value Default: Inherit from target

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

See Also

"Customize Stack Space Allocation" in the Simulink Coder documentation

Pass reusable subsystem outputs as

Specify how a reusable subsystem passes outputs.

Settings

Default: Structure reference

Structure reference

Passes reusable subsystem outputs as a pointer to a structure stored in global memory.

Individual arguments

Passes each reusable subsystem output argument as an address of a local, instead of as a pointer to an area of global memory containing all output arguments. This option reduces global memory usage and eliminates copying local variables back to global block I/O structures. When the signals are allocated as local variables, there may be an increase in stack size. If the stack size increases beyond a level that you want, use the default setting. The maximum number of output arguments passed individually is 12.

Note The default option is used for reusable subsystems that have signals with variable dimensions.

Dependencies

This parameter:

- Requires a Embedded Coder license.
- Appears only for ERT-based targets.

Command-Line Information

Parameter: PassReuseOutputArgsAs Type: string Value: 'Structure reference' | 'Individual arguments' Default: 'Structure reference'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact (execution), Structure reference (ROM), Individual arguments (RAM)
Safety precaution	No impact

See Also

• Optimizing a Model for Code Generation

Parameter structure

Control how parameter data is generated for reusable subsystems.

Settings

Default: Hierarchical

Hierarchical

Generates a separate header file, defining an independent parameter structure, for each subsystem that meets the following conditions:

- The subsystem **Code generation function packaging** parameter is set to **Reusable** function.
- The subsystem does not violate any code reuse limitations.
- The subsystem does not access parameters other than its own (such as parameters of the root-level model).

Each subsystem parameter structure is referenced as a substructure of the root-level parameter data structure, creating a structure hierarchy.

NonHierarchical

Generates a single, flat parameter data structure. Subsystem parameters are defined as fields within the structure. A nonhierarchical data structure can reduce compiler padding between word boundaries, producing more efficient compiled code.

Dependencies

- This parameter appears only for ERT-based targets.
- This parameter requires a Embedded Coder license when generating code.
- This parameter is enabled by "Inline parameters" on page 1-166.

Command-Line Information

Parameter: InlinedParameterPlacement Type: string Value: 'Hierarchical' | 'NonHierarchical' Default: 'Hierarchical'

Application	Setting
Debugging	No impact
Traceability	Hierarchical
Efficiency	NonHierarchical
Safety precaution	No impact

- Nonvirtual Subsystem Code Generation
- Optimizing a Model for Code Generation
- Configuration Parameters Dialog Box
- Optimization Pane

Model Parameter Configuration Dialog Box

The **Model Parameter Configuration** dialog box allows you to override the **Inline parameters** option (see Inline parameters) for selected parameters.

📣 Model Parameter Configuration: vo	գե				
Description					
Define the global (tunable) parameters for your model. These parameters affect: 1. the simulation by providing the ability to tune parameters during execution, and 2. the generated code by enabling access to parameters by other modules.					
Source list	Global (tunable)	parameters			
MATLAB workspace	Name	Storage class	Storage type qualifier		
Name 1 balance 2 gain					
Refresh list Add to table >>			New Remove		
		OK Cancel	Help Apply		

Note Simulink software ignores the settings of this dialog box if a model contains references to other models. However, you can still tune parameters of such models, using Simulink.Parameter objects (see "Inline Parameter Requirements" for more information).

The dialog box has the following controls.

Source list

Displays a list of workspace variables. The options are:

• MATLAB workspace — Lists all variables in the MATLAB workspace that have numeric values.

• Referenced workspace variables — Lists only those variables referenced by the model.

Refresh list

Updates the source list. Click this button if you have added a variable to the workspace since the last time the list was displayed.

Add to table

Adds the variables selected in the source list to the adjacent table of tunable parameters.

New

Defines a new parameter and adds it to the list of tunable parameters. Use this button to create tunable parameters that are not yet defined in the MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB workspace. You must create the variable yourself.

Storage class

Used for code generation. For more information, see "Storage class" on page 3-8.

Storage type qualifier

Used for code generation. For more information, see "Storage type qualifier" on page 3-8.

Optimization Pane: Stateflow

When Simulink Coder is installed on your system, the **Optimization > Stateflow** pane includes the following parameters:

Code generation		
Use bitsets for storing state configuration	Use bitsets for storing Boolean data	
In this section]

"Optimization Pane: Stateflow Tab Overview" on page 1-205

"Use bitsets for storing state configuration" on page 1-206

"Use bitsets for storing Boolean data" on page 1-208

Optimization Pane: Stateflow Tab Overview

Set up optimizations for a model's active configuration set.

Tips

- To open the Optimization: Stateflow pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Optimization > Stateflow.
- Simulink Coder optimizations appear only when the Simulink Coder product is installed on your system.

- "Optimize Generated Code" in the Stateflow documentation
- "Optimization Pane: Stateflow" on page 1-204
- "Configuration Parameters Dialog Box Overview" on page 1-3

Use bitsets for storing state configuration

Use bitsets to reduce the amount of memory required to store state configuration variables.

Settings

Default: Off

🔽 On

Stores state configuration variables in bitsets. Potentially reduces the amount of memory required to store the variables. Potentially requires more instructions to access state configuration, which can result in less optimal code.

C Off

Stores state configuration variables in unsigned bytes. Potentially increases the amount of memory required to store the variables. Potentially requires fewer instructions to access state configuration, which can result in more optimal code.

Tips

- Selecting this check box can significantly reduce the amount of memory required to store the variables. However, it can increase the amount of memory required to store target code if the target processor does not include instructions for manipulating bitsets.
- Select this check box for Stateflow charts that have a large number of sibling states at a given level of the hierarchy.
- Clear this check box for Stateflow charts with a small number of sibling states at a given level of the hierarchy.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: StateBitsets

Type: string Value: 'on' | 'off' Default: 'off'

Recommended Settings

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	Off (execution, ROM), On (RAM)
Safety precaution	No impact

- "Optimize Generated Code" in the Stateflow documentation
- "Optimization Pane: Stateflow" on page 1-204
- "Configuration Parameters Dialog Box Overview" on page 1-3

Use bitsets for storing Boolean data

Use bitsets to reduce the amount of memory required to store Boolean data.

Settings

Default: Off

🔽 On

Stores Boolean data in bitsets. Potentially reduces the amount of memory required to store the data. Potentially requires more instructions to access the data, which can result in less optimal code.

C Off

Stores Boolean data in unsigned bytes. Potentially increases the amount of memory required to store the data. Potentially requires fewer instructions to access the data, which can result in more optimal code.

Tips

- Select this check box for Stateflow charts that reference Boolean data infrequently.
- Clear this check box for Stateflow charts that reference Boolean data frequently.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: DataBitsets Type: string Value: 'on' | 'off' Default: 'off'

Application	Setting
Debugging	Off
Traceability	Off
Efficiency	Off (execution, ROM), On (RAM)
Safety precaution	No impact

- "Optimize Generated Code" in the Stateflow documentation
- "Optimization Pane: Stateflow" on page 1-204
- "Configuration Parameters Dialog Box Overview" on page 1-3

Diagnostics Pane: Solver

Select:	Solver	
Solver Data Import/Export Optimization	Algebraic loop: Minimize algebraic loop:	warning warning
- Diagnostics - Sample Time - Data Validity	Block priority violation: Min step size violation:	warning war
Type Conversion Connectivity Compatibility	Sample hit time adjusting: Consecutive zero crossings violation:	none
	Model Referencing Unspecified inheritability of sample time: Solver data inconsistency:	warning Inone
	Automatic solver parameter selection: Extraneous discrete derivative signals:	none error
	State name clash: SimState interface checksum mismatch:	warning
	SimState object from earlier release:	error •

In this section...

"Solver Diagnostics Overview" on page 1-212

"Algebraic loop" on page 1-213

"Minimize algebraic loop" on page 1-215

"Block priority violation" on page 1-217

"Min step size violation" on page 1-219

"Sample hit time adjusting" on page 1-221

"Consecutive zero-crossings violation" on page 1-223

"Unspecified inheritability of sample time" on page 1-225

"Solver data inconsistency" on page 1-227

"Automatic solver parameter selection" on page 1-229

In this section...

"Extraneous discrete derivative signals" on page 1-231

"State name clash" on page 1-233

"SimState interface checksum mismatch" on page 1-234

"SimState object from earlier release" on page 1-236

Solver Diagnostics Overview

Specify what diagnostic actions Simulink software should take, if any, when it detects an abnormal condition with the solver.

Configuration

Set the parameters displayed.

Tips

- To open the Diagnostics: Solver pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics. The Solver pane appears.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Diagnosing Simulation Errors
- Sample Time Diagnostics
- Data Validity Diagnostics
- Type Conversion Diagnostics
- Connectivity Diagnostics
- Compatibility Diagnostics
- Model Referencing Diagnostics
- Saving Diagnostics
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Algebraic loop

Select the diagnostic action to take if Simulink software detects an algebraic loop while compiling the model.

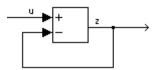
Settings

Default: warning

none

When the Simulink software detects an algebraic loop, the software tries to solve the algebraic loop. If the software cannot solve the algebraic loop, it reports an error and the simulation terminates.

warning


When Simulink software detects an algebraic loop, it displays a warning and tries to solve the algebraic loop. If the software cannot solve the algebraic loop, it reports an error and the simulation terminates.

error

When Simulink software detects an algebraic loop, it terminates the simulation, displays an error message, and highlights the portion of the block diagram that comprises the loop.

Tips

• An *algebraic loop* generally occurs when an input port with direct feedthrough is driven by the output of the same block, either directly, or by a feedback path through other blocks with direct feedthrough. An example of an algebraic loop is this simple scalar loop.

• When a model contains an algebraic loop, Simulink software calls a loop-solving routine at each time step. The loop solver performs iterations to determine the solution to the problem (if it can). As a result, models with algebraic loops run slower than models without them.

1

- Use the error option to highlight algebraic loops when you simulate a model. This causes Simulink software to display an error dialog (the Diagnostics Viewer) and recolor portions of the diagram that represent the first algebraic loop that it detects. Simulink software uses red to color the blocks and lines that constitute the loop. Closing the error dialog restores the diagram to its original colors.
- See Algebraic Loops for more information.

Command-Line Information

```
Parameter: AlgebraicLoopMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'
```

Recommended Settings

Application	Setting
Debugging	error
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Algebraic Loops
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Minimize algebraic loop

Select the diagnostic action to take if artificial algebraic loop minimization cannot be performed for an atomic subsystem or Model block because an input port has direct feedthrough.

When you set the **Minimize algebraic loop occurrences** parameter for an atomic subsystem or a Model block, if Simulink detects an artificial algebraic loop, it attempts to eliminate the loop by checking for non-direct-feedthrough blocks before simulating the model. If Simulink cannot minimize the artificial algebraic loop, the simulation performs the diagnostic action specified by the **Minimize algebraic loop** parameter.

Settings

Default: warning

none

Simulink takes no action.

warning

Simulink displays a warning that it cannot minimize the artificial algebraic loop.

error

Simulink terminates the simulation and displays an error that it cannot minimize the artificial algebraic loop.

Tips

- If the port is involved in an artificial algebraic loop, Simulink software can remove the loop only if at least one other input port in the loop lacks direct feedthrough.
- Simulink software cannot minimize artificial algebraic loops containing signals designated as test points (see Working with Test Points).

Command-Line Information

Parameter: ArtificialAlgebraicLoopMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Minimizing Artificial Algebraic Loops Using Simulink
- Diagnosing Simulation Errors
- Working with Test Points
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Block priority violation

Select the diagnostic action to take if Simulink software detects a block priority specification error.

Settings

Default: warning

warning

When Simulink software detects a block priority specification error, it displays a warning.

error

When Simulink software detects a block priority specification error, it terminates the simulation and displays an error message.

Tips

- Simulink software allows you to assign update priorities to blocks. Simulink software executes the output methods of higher priority blocks before those of lower priority blocks.
- Simulink software honors the block priorities that you specify only if they are consistent with the Simulink block sorting algorithm. If Simulink software is unable to honor a user specified block priority, it generates a block priority specification error.

Command-Line Information

Parameter: BlockPriorityViolationMsg
Type: string
Value: 'warning' | 'error'
Default: 'warning'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Controlling and Displaying the Sorted Order
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Min step size violation

Select the diagnostic action to take if Simulink software detects that the next simulation step is smaller than the minimum step size specified for the model.

Settings

Default: warning

```
warning
```

Simulink software displays a warning.

```
error
```

Simulink software terminates the simulation and displays an error message.

Tips

- A minimum step size violation can occur if the specified error tolerance for the model requires a step size smaller than the specified minimum step size. See Min step size and Maximum order for more information.
- Simulink software allows you to specify the maximum number of consecutive minimum step size violations permitted (see Number of consecutive min steps).

Command-Line Information

Parameter: MinStepSizeMsg Type: string Value: 'warning' | 'error' Default: 'warning'

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- Min step size
- Maximum order
- Number of consecutive min steps
- "Purely Discrete Systems"
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Sample hit time adjusting

Select the diagnostic action to take if Simulink software makes a minor adjustment to a sample hit time while running the model.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

Tips

- Simulink software might change a sample hit time if that hit time is close to the hit time for another task. If Simulink software considers the difference to be due only to numerical errors (for example, precision issues or roundoff errors), it changes the sample hits of the faster task or tasks to exactly match the time of the slowest task that has that hit.
- Over time, these sample hit changes might cause a discrepancy between the numerical simulation results and the actual theoretical results.
- When this option is set to warning, the MATLAB Command Window displays a warning like the following when Simulink software detects a change in the sample hit time:

Warning: Timing engine warning: Changing the hit time for ...

Command-Line Information

Parameter: TimeAdjustmentMsg
Type: string
Value: 'none' | 'warning'
Default: 'none'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Consecutive zero-crossings violation

Select the diagnostic action to take when Simulink software detects that the number of consecutive zero crossings exceeds the specified maximum.

Settings

Default: error

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- If you select warning or error, Simulink software reports the current simulation time, the number of consecutive zero crossings counted, and the type and name of the block in which Simulink software detected the zero crossings.
- For more information, see Preventing Excessive Zero Crossings.

Dependency

This diagnostic applies only when you are using a variable-step solver and the zero-crossing control is set to either Enable all or Use local settings.

Command-Line Information

Parameter: MaxConsecutiveZCsMsg
Type: string
Value: 'none' | 'warning'
Default: 'error'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	warning or error

- Zero-Crossing Detection
- Zero-Crossing Control
- Number of consecutive zero crossings
- Time tolerance
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Unspecified inheritability of sample time

Select the diagnostic action to take if this model contains S-functions that do not specify whether they preclude this model from inheriting their sample times from a parent model.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- Not specifying an inheritance rule may lead to incorrect simulation results.
- Simulink software checks for this condition only if the solver used to simulate this model is a fixed-step discrete solver and the periodic sample time constraint for the solver is set to ensure sample time independence
- For more information, see Periodic sample time constraint.

Command-Line Information

```
Parameter: UnknownTsInhSupMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'
```

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Periodic sample time constraint
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Solver data inconsistency

Select the diagnostic action to take if Simulink software detects S-functions that have continuous sample times, but do not produce consistent results when executed multiple times.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- Consistency checking can cause a significant decrease in performance (up to 40%).
- Consistency checking is a debugging tool that validates certain assumptions made by Simulink ODE solvers. Use this option to:
 - Validate your S-functions and ensure that they adhere to the same rules as Simulink built-in blocks.
 - Determine the cause of unexpected simulation results.
 - Ensure that blocks produce constant output when called with a given value of *t* (time).
- Simulink software saves (caches) output, the zero-crossing, the derivative, and state values from one time step for use in the next time step. The value at the end of a time step can generally be reused at the start of the next time step. Solvers, particularly stiff solvers such as ode23s and ode15s, take advantage of this to avoid redundant calculations. While calculating the Jacobian matrix, a stiff solver can call a block's output functions many times at the same value of t.

1

- When consistency checking is enabled, Simulink software recomputes the appropriate values and compares them to the cached values. If the values are not the same, a consistency error occurs. Simulink software compares computed values for these quantities:
 - Outputs
 - Zero crossings
 - Derivatives
 - States

Command-Line Information

Parameter: ConsistencyChecking Type: string Value: 'none' | 'warning' | 'error' Default: 'warning'

Recommended Settings

Application	Setting
Debugging	warning
Traceability	No impact
Efficiency	none
Safety precaution	No impact

- Diagnosing Simulation Errors
- Choosing a Solver
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Automatic solver parameter selection

Select the diagnostic action to take if Simulink software changes a solver parameter setting.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

When enabled, this option notifies you if:

- Simulink software changes a user-modified parameter to make it consistent with other model settings.
- Simulink software automatically selects solver parameters for the model, such as FixedStepSize.

For example, if you simulate a discrete model that specifies a continuous solver, Simulink software changes the solver type to discrete and displays a warning about this change at the MATLAB command line.

Command-Line Information

Parameter: SolverPrmCheckMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'warning'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Choosing a Solver
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

Extraneous discrete derivative signals

Select the diagnostic action to take when a discrete signal appears to pass through a Model block to the input of a block with continuous states.

Settings

Default: error

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- This error can occur if a discrete signal passes through a Model block to the input of a block with continuous states, such as an Integrator block. In this case, Simulink software cannot determine with certainty the minimum rate at which it needs to reset the solver to solve this model accurately.
- If this diagnostic is set to none or warning, Simulink software resets the solver whenever the value of the discrete signal changes. This ensures accurate simulation of the model if the discrete signal is the source of the signal entering the block with continuous states. However, if the discrete signal is not the source of the signal entering the block with continuous states, resetting the solver at the rate the discrete signal changes can lead to the solver being reset more frequently than necessary, slowing down the simulation.
- If this diagnostic is set to error, Simulink software halts when compiling this model and displays an error.

Dependency

This diagnostic applies only when you are using a variable-step ode solver and the block diagram contains Model blocks.

Command-Line Information

```
Parameter: ModelReferenceExtraNoncontSigs
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Diagnosing Simulation Errors
- Choosing a Solver
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

State name clash

Select the diagnostic action to take when a name is used for more than one state in the model.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

Tips

- This diagnostic applies for continuous and discrete states during simulation.
- This diagnostic applies only if you save states to the MATLAB workspace using the format **Structure** or **Structure with time**. If you do not save states in structure format, the state names are not used, and therefore the diagnostic will not warn you about a naming conflict.

Command-Line Information

Parameter: StateNameClashWarn Type: string Value: 'none' | 'warning' Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Т

Application	Setting
Efficiency	No impact
Safety precaution	No impact

See Also

- Diagnosing Simulation Errors
- Data Import/Export Pane
- "Export Runtime Information"
- Configuration Parameters Dialog Box
- Diagnostics Pane: Solver

SimState interface checksum mismatch

Use this check to ensure that the interface checksum is identical to the model checksum before loading the SimState.

Settings

Default: warning

none

Simulink software does not compare the interface checksum to the model checksum.

warning

The interface checksum in the SimState is different than the model checksum.

error

When Simulink detects that a change in the configuration settings occurred after saving the SimState, it does not load the SimState and reports an error.

Command-Line Information

 $Parameter: \verb"SimStateInterfaceChecksumMismatchMsg"$

```
Type: string
Value: 'warning' | 'error' | 'none'
Default: 'warning'
```

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Save and Restore Simulation State as SimState"
- Simulink.BlockDiagram.getChecksum

SimState object from earlier release

Use this check to report that the SimState was generated by an earlier version of Simulink.

Settings

Default: error

warning

Simulink will restore as much of this SimState as possible.

error

When Simulink detects that the SimState was generated by an earlier version of Simulink, it does not attempt to load the object.

Command-Line Information

```
Parameter: SimStateOlderReleaseMsg
Type: string
Value: 'warning' | 'error'
Default: 'error'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

See Also

"Save and Restore Simulation State as SimState"

Diagnostics Pane: Sample Time

Sample Time	
Source block specifies -1 sample time:	warning 💌
Discrete used as continuous:	warning 🗾
Multitask rate transition:	error
Single task rate transition:	none
Multitask conditionally executed subsystem:	error
Tasks with equal priority:	warning 🗾
Enforce sample times specified by Signal Specification blocks:	warning 💌

In this section	
"Sample Time Diagnos	tics Overview" on page 1-238
"Source block specifies -1 sample time" on page 1-239	
"Discrete used as continuous" on page 1-241	
"Multitask rate transition" on page 1-243	
"Single task rate transition" on page 1-245	
"Multitask conditionally executed subsystem" on page 1-247	
"Tasks with equal priority" on page 1-249	
"Enforce sample times 1-251	specified by Signal Specification blocks" on page

Sample Time Diagnostics Overview

Specify what diagnostic actions Simulink software should take, if any, when it detects a compilation error related to model sample times.

Configuration

Set the parameters displayed.

Tips

- To open the Sample Time pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics > Sample Time.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Diagnosing Simulation Errors
- Solver Diagnostics
- Data Validity Diagnostics
- Type Conversion Diagnostics
- Connectivity Diagnostics
- Compatibility Diagnostics
- Model Referencing Diagnostics
- Saving Diagnostics
- Configuration Parameters Dialog Box
- Diagnostics Pane: Sample Time

Source block specifies -1 sample time

Select the diagnostic action to take if a source block (such as a Sine Wave block) specifies a sample time of -1.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- The Random Source block does not obey this parameter. If its **Sample time** parameter is set to -1, the Random Source block inherits its sample time from its output port and never produces warnings or errors.
- Some Communications System ToolboxTM blocks internally inherit sample times, which can be a useful and valid modeling technique. Set this parameter to none for these types of models.

Command-Line Information

Parameter: InheritedTsInSrcMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Sample Time

Discrete used as continuous

Select the diagnostic action to take if a discrete block (such as the Unit Delay block), inherits a continuous sample time from the block connected to its input.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: DiscreteInheritContinuousMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

• Diagnosing Simulation Errors

- Configuration Parameters Dialog Box
- Diagnostics Pane: Sample Time

Multitask rate transition

Select the diagnostic action to take if an invalid rate transition occurred between two blocks operating in multitasking mode.

Settings

Default: error

```
warning
```

Simulink software displays a warning.

```
error
```

Simulink software terminates the simulation and displays an error message.

Tips

- This parameter allows you to adjust error checking for sample rate transitions between blocks that operate at different sample rates.
- Use this option for models of real-time multitasking systems to ensure detection of illegal rate transitions between tasks that can result in a task's output being unavailable when needed by another task. You can then use Rate Transition blocks to eliminate such illegal rate transitions from the model.

Command-Line Information

Parameter: MultiTaskRateTransMsg Type: string Value: 'warning' | 'error' Default: 'error'

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

1

Application	Setting
Efficiency	No impact
Safety precaution	error

- Rate Transition block
- Model Execution and Rate Transitions
- Single-Tasking and Multitasking Execution Modes
- "Handle Rate Transitions"
- Tasking mode for periodic sample times
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Sample Time

Single task rate transition

Select the diagnostic action to take if a rate transition occurred between two blocks operating in single-tasking mode.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- This parameter allows you to adjust error checking for sample rate transitions between blocks that operate at different sample rates.
- Use this parameter when you are modeling a single-tasking system. In such systems, task synchronization is not an issue.

Command-Line Information

Parameter: SingleTaskRateTransMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

1

Application	Setting
Efficiency	No impact
Safety precaution	none or error

- Rate Transition block
- Model Execution and Rate Transitions
- Single-Tasking and Multitasking Execution Modes
- "Handle Rate Transitions"
- Tasking mode for periodic sample times
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Sample Time

Multitask conditionally executed subsystem

Select the diagnostic action to take if Simulink software detects a subsystem that may cause data corruption or non-deterministic behavior.

Settings

Default: error

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- These types of subsystems can be caused by either of the following conditions:
 - Your model uses multitasking solver mode and it contains an enabled subsystem that operates at multiple rates.
 - Your model contains a conditionally executed subsystem that can reset its states and that contains an asynchronous subsystem.

These types of subsystems can cause corrupted data or nondeterministic behavior in a real-time system that uses code generated from the model.

- For models that use multitasking solver mode and contain an enabled subsystem that operates at multiple rates, consider using single-tasking solver mode or using a single-rate enabled subsystem instead.
- For models that contain a conditionally executed subsystem that can reset its states and that contains an asynchronous subsystem, consider moving the asynchronous subsystem outside the conditionally executed subsystem.

Command-Line Information

Parameter: MultiTaskCondExecSysMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Tasking mode for periodic sample times
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Sample Time

Tasks with equal priority

Select the diagnostic action to take if Simulink software detects two tasks with equal priority that can preempt each other in the target system.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- This condition can occur when one asynchronous task of the target represented by this model has the same priority as one of the target's asynchronous tasks.
- This option must be set to Error if the target allows tasks having the same priority to preempt each other.

Command-Line Information

Parameter: TasksWithSamePriorityMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	No impact
Safety precaution	none or error

- Diagnosing Simulation Errors
- "Rate Transitions and Asynchronous Blocks"
- Configuration Parameters Dialog Box
- Diagnostics Pane: Sample Time

Enforce sample times specified by Signal Specification blocks

Select the diagnostic action to take if the sample time of the source port of a signal specified by a Signal Specification block differs from the signal's destination port.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- The Signal Specification block allows you to specify the attributes of the signal connected to its input and output ports. If the specified attributes conflict with the attributes specified by the blocks connected to its ports, Simulink software displays an error when it compiles the model, for example, at the beginning of a simulation. If no conflict exists, Simulink software eliminates the Signal Specification block from the compiled model.
- You can use the Signal Specification block to ensure that the actual attributes of a signal meet desired attributes, or to ensure correct propagation of signal attributes throughout a model.

Command-Line Information

Parameter: SigSpecEnsureSampleTimeMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Signal Specification block
- Configuration Parameters Dialog Box
- Diagnostics Pane: Sample Time

Diagnostics	Pane:	Data	Validity
-------------	-------	------	----------

- Data Validity		
☐ Signals		
Signal resolution: Explicit only Detect overflow: warning		
Division by singular matrix: none Inf or NaN block output: none		
Underspecified data types: none rt" prefix for identifiers: error		
Simulation range checking: none		
Parameters		
Detect downcast: error Detect overflow: error		
Detect underflow: none Detect precision loss: warning		
Detect loss of tunability: warning		
Data Store Memory Block		
Detect read before write: Use local settings 💌 Multitask data store:		
Detect write after read: Use local settings 💌 Duplicate data store names: none		
Detect write after write: Use local settings		
Merge Block		
Detect multiple driving blocks executing at the same time step: none		
Model Initialization		
Underspecified initialization detection: Classic		
Check undefined subsystem initial output		
Check preactivation output of execution context		
Check runtime output of execution context		
Debugging		
Array bounds exceeded: none		
Model Verification block enabling: Use local settings		

In this section
"Data Validity Diagnostics Overview" on page 1-255
"Signal resolution" on page 1-256
"Division by singular matrix" on page 1-258
"Underspecified data types" on page 1-260
"Simulation range checking" on page 1-262
"Detect overflow" on page 1-264
"Inf or NaN block output" on page 1-266
""rt" prefix for identifiers" on page 1-268
"Detect downcast" on page 1-270
"Detect overflow" on page 1-272
"Detect underflow" on page 1-274
"Detect precision loss" on page 1-276
"Detect loss of tunability" on page 1-278
"Detect read before write" on page 1-280
"Detect write after read" on page 1-282
"Detect write after write" on page 1-284
"Multitask data store" on page 1-286
"Duplicate data store names" on page 1-288
"Detect multiple driving blocks executing at the same time step" on page 1-290
"Underspecified initialization detection" on page 1-292
"Check undefined subsystem initial output" on page 1-295
"Check preactivation output of execution context" on page 1-299
"Check runtime output of execution context" on page 1-303
"Array bounds exceeded" on page 1-307
"Model Verification block enabling" on page 1-309

Data Validity Diagnostics Overview

Specify what diagnostic action Simulink software should take, if any, when it detects a condition that could compromise the integrity of data defined by the model, as well as the Data Validity parameters that pertain to code generation, and are used to debug a model.

Configuration

Set the parameters displayed.

Tips

- To open the Data Validity pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics > Data Validity.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Diagnosing Simulation Errors
- Solver Diagnostics
- Sample Time Diagnostics
- Type Conversion Diagnostics
- Connectivity Diagnostics
- Compatibility Diagnostics
- Model Referencing Diagnostics
- Saving Diagnostics
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Signal resolution

Select how Simulink software resolves signals to Simulink.Signal objects. See "Explicit and Implicit Symbol Resolution" for more information.

Settings

Default: Explicit only

Explicit only

Do not perform implicit signal resolution. Only explicitly specified signal resolution occurs. This is the recommended setting.

Explicit and implicit

Perform implicit signal resolution wherever possible, without posting any warnings about the implicit resolutions.

Explicit and warn implicit

Perform implicit signal resolution wherever possible, posting a warning of each implicit resolution that occurs.

Tips

- Use the Signal Properties dialog box (see Signal Properties Dialog Box) to specify explicit resolution for signals.
- Use the **State Attributes** pane on dialog boxes of blocks that have discrete states, e.g., the Discrete-Time Integrator block, to specify explicit resolution for discrete states.
- Multiple signals can resolve to the same signal object and have the properties that the object specifies.
- MathWorks[®] discourages using implicit signal resolution except for fast prototyping, because implicit resolution slows performance, complicates model validation, and can have nondeterministic effects.
- Simulink software provides the disableimplicitsignalresolution function, which you can use to change settings throughout a model so that it does not use implicit signal resolution.

Command-Line Information

```
Parameter: SignalResolutionControl
Type: string
Value: 'UseLocalSettings' | 'TryResolveAll' |
'TryResolveAllWithWarning'
Default: 'UseLocalSettings'
```

SignalResolutionControl Value	Equivalent Signal Resolution Value
'UseLocalSettings'	Explicit only
'TryResolveAll'	Explicit and implicit
'TryResolveAllWithWarning'	Explicit and warn implicit

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Explicit only

- Diagnosing Simulation Errors
- Simulink.Signal
- Signal Properties Dialog Box
- Discrete-Time Integrator block
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Division by singular matrix

Select the diagnostic action to take if the Product block detects a singular matrix while inverting one of its inputs in matrix multiplication mode.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: CheckMatrixSingularityMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

• Diagnosing Simulation Errors

- Product block
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Underspecified data types

Select the diagnostic action to take if Simulink software could not infer the data type of a signal during data type propagation.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnderSpecifiedDataTypeMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

• Diagnosing Simulation Errors

- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Simulation range checking

Select the diagnostic action to take when signals exceed specified minimum or maximum values.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- Use a block's **Output minimum** or **Minimum** parameter to specify the minimum value that the block should output.
- Use a block's **Output maximum** or **Maximum** parameter to specify the maximum value that the block should output.
- Enable this diagnostic to check whether block outputs exceed the minimum or maximum values that you specified.
- When **Simulation range checking** is enabled, Simulink software performs signal range checking at every time step during a simulation. Setting this diagnostic to warning or error can cause a decrease in simulation performance.

Command-Line Information

Parameter: SignalRangeChecking Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Recommended Settings

Application	Setting
Debugging	warning or error
Traceability	warning or error
Efficiency	none
Safety precaution	error

- "Signal Ranges"
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Detect overflow

Select the diagnostic action to take if the value of a signal or parameter is too large to be represented by the signal or parameter's data type.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- This diagnostic applies only to overflows for integer and fixed-point data types.
- To check for floating-point overflows (e.g., Inf or NaN) for double or single data types, select the Inf or NaN block output diagnostic. (See "Inf or NaN block output" on page 1-266 for more information.)

Command-Line Information

Parameter: IntegerOverflowMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'warning'

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- "About Data Stores"
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Т

Inf or NaN block output

Select the diagnostic action to take if the value of a block output is Inf or NaN at the current time step.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- This diagnostic applies only to floating-point overflows for double or single data types.
- To check for integer and fixed-point overflows, select the **Detect overflow** diagnostic. (See "Detect overflow" on page 1-264 for more information.)

Command-Line Information

Parameter: SignalInfNanChecking Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

"rt" prefix for identifiers

Select the diagnostic action to take during code generation if a Simulink object name (the name of a parameter, block, or signal) begins with rt.

Settings

Default: error

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- The default setting (error) causes code generation to terminate with an error if it encounters a Simulink object name (parameter, block, or signal), that begins with rt.
- This is intended to prevent inadvertent clashes with generated identifiers whose names begins with rt.

Command-Line Information

Parameter: RTPrefix Type: string Value: 'none' | 'warning' | 'error' Default: 'error'

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Т

Detect downcast

Select the diagnostic action to take when a parameter downcast occurs during simulation.

Settings

Default: error

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- A parameter downcast occurs if the computation of block output required converting the parameter's specified type to a type having a smaller range of values (for example, from uint32 to uint8).
- This diagnostic applies only to named tunable parameters.

Command-Line Information

Parameter: ParameterDowncastMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Detect overflow

Select the diagnostic action to take if a parameter overflow occurs during simulation.

Settings

Default: error

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- A parameter overflow occurs if Simulink software encounters a parameter whose data type's range is not large enough to accommodate the parameter's ideal value (the ideal value is either too large or too small to be represented by the data type). For example, suppose that the parameter's ideal value is 200 and its data type is int8. Overflow occurs in this case because the maximum value that int8 can represent is 127.
- Parameter overflow differs from parameter precision loss, which occurs when the ideal parameter value is within the range of the data type and scaling being used, but cannot be represented exactly.
- Both parameter overflow and precision loss are quantization errors, and the distinction between them can be a fine one. The **Detect overflow** diagnostic reports all quantization errors greater than one bit. For very small parameter quantization errors, precision loss will be reported rather than an overflow when

$$(Max + Slope) \ge V_{ideal} > (Min - Slope)$$

where

• *Max* is the maximum value representable by the parameter data type

- *Min* is the minimum value representable by the parameter data type
- *Slope* is the slope of the parameter data type (slope = 1 for integers)
- V_{ideal} is the ideal value of the parameter

Command-Line Information

```
Parameter: ParameterOverflowMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Detect underflow

Select the diagnostic action to take when a parameter underflow occurs during simulation.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- Parameter underflow occurs when Simulink software encounters a parameter whose data type does not have enough precision to represent the parameter's ideal value because the ideal value is too small.
- When parameter underflow occurs, casting the ideal value to the data type causes the parameter's modeled value to become zero, and therefore to differ from its ideal value.

Command-Line Information

Parameter: ParameterUnderflowMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Detect precision loss

Select the diagnostic action to take when parameter precision loss occurs during simulation.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- Precision loss occurs when Simulink software encounters a parameter whose data type does not have enough precision to represent the parameter's value exactly. As a result, the modeled value differs from the ideal value.
- Parameter precision loss differs from parameter overflow, which occurs when the range of the parameter's data type, i.e., that maximum value that it can represent, is smaller than the ideal value of the parameter.
- Both parameter overflow and precision loss are quantization errors, and the distinction between them can be a fine one. The **Detect Parameter overflow** diagnostic reports all parameter quantization errors greater than one bit. For very small parameter quantization errors, precision loss will be reported rather than an overflow when

$$(Max + Slope) \ge V_{ideal} > (Min - Slope)$$

where

- *Max* is the maximum value representable by the parameter data type.
- *Min* is the minimum value representable by the parameter data type.

- *Slope* is the slope of the parameter data type (slope = 1 for integers).
- V_{ideal} is the full-precision, ideal value of the parameter.

Command-Line Information

```
Parameter: ParameterPrecisionLossMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Detect loss of tunability

Select the diagnostic action to take when an expression with tunable variables is reduced to its numerical equivalent.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tip

If a tunable workspace variable is modified by Mask Initialization code, or is used in an arithmetic expression with unsupported operators or functions, the expression is reduced to a numeric expression and therefore cannot be tuned.

Command-Line Information

Parameter: ParameterTunabilityLossMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Tunable Expressions
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Detect read before write

Select the diagnostic action to take if the model attempts to read data from a data store to which it has not written data in this time step.

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or Simulink.Signal object in a model workspace) use the setting specified by the block. For each global data store (defined by a Simulink.Signal object in the base workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.

Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.

Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Command-Line Information

```
Parameter: ReadBeforeWriteMsg
Type: string
Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'
Default: 'UseLocalSettings'
```

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Enable all as errors

- Diagnosing Simulation Errors
- "About Data Stores"
- Data Store Memory block
- Simulink.Signal object
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

T

Detect write after read

Select the diagnostic action to take if the model attempts to write data to a data store after previously reading data from it in the current time step.

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or Simulink.Signal object in a model workspace) use the setting specified by the block. For each global data store (defined by a Simulink.Signal object in the base workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.

Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.

Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Command-Line Information

```
Parameter: WriteAfterReadMsg
Type: string
Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'
Default: 'UseLocalSettings'
```

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Enable all as errors

- Diagnosing Simulation Errors
- "About Data Stores"
- Data Store Memory block
- Simulink.Signal object
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

T

Detect write after write

Select the diagnostic action to take if the model attempts to write data to a data store twice in succession in the current time step.

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or Simulink.Signal object in a model workspace) use the setting specified by the block. For each global data store (defined by a Simulink.Signal object in the base workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.

Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.

Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Command-Line Information

```
Parameter: WriteAfterWriteMsg
Type: string
Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'
Default: 'UseLocalSettings'
```

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Enable all as errors

- Diagnosing Simulation Errors
- "About Data Stores"
- Data Store Memory block
- Simulink.Signal object
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Т

Multitask data store

Select the diagnostic action to take when one task reads data from a Data Store Memory block to which another task writes data.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- Such a situation is safe only if one of the tasks cannot interrupt the other, such as when the data store is a scalar and the writing task uses an atomic copy operation to update the store or the target does not allow the tasks to preempt each other.
- You should disable this diagnostic (set it to none) only if the application warrants it, such as if the application uses a cyclic scheduler that prevents tasks from preempting each other.

Command-Line Information

Parameter: MultiTaskDSMMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- "About Data Stores"
- Data Store Memory block
- Simulink.Signal object
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Duplicate data store names

Select the diagnostic action to take when the model contains multiple data stores that have the same name. The data stores can be defined with Data Store Memory blocks or Simulink.Signal objects.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tip

This diagnostic is useful for detecting errors that can occur when a lower-level data store unexpectedly shadows a higher-level data store that has the same name.

Command-Line Information

Parameter: UniqueDataStoreMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- Diagnosing Simulation Errors
- "About Data Stores"
- Data Store Memory block
- Simulink.Signal object
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Detect multiple driving blocks executing at the same time step

Select the diagnostic action to take when the software detects a Merge block with more than one driving block executing at the same time step.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- Connecting the inputs of a Merge block to multiple driving blocks that execute at the same time step can lead to inconsistent results for both simulation and generated code. Set **Detect multiple driving blocks executing at the same time step** to error to avoid such situations.
- If **Underspecified initialization detection** is set to Simplified, this parameter is disabled, and Simulink software automatically uses the strictest setting (error) for this diagnostic. Multiple driving blocks executing at the same time step always result in an error.

Dependency

This parameter is enabled only if **Underspecified initialization detection** is set to **Classic**.

Command-Line Information

Parameter: MergeDetectMultiDrivingBlocksExec Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Recommended Settings

Application	Setting
Debugging	error
Traceability	error
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Merge block
- "Check consistency of initialization parameters for Outport and Merge blocks"
- "Underspecified initialization detection" on page 1-292
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Underspecified initialization detection

Select how Simulink software handles initialization of initial conditions for conditionally executed subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time Integrator blocks.

Settings

Default: Classic

Classic

Initial conditions are initialized the same way they were prior to R2008b.

Simplified

Initial conditions are initialized using the enhanced behavior, which can improve the consistency of simulation results.

Tips

- Use Classic to ensure compatibility with previous releases of Simulink.
- Use Simplified to improve the consistency of simulation results, especially for models that do not specify initial conditions for conditional subsystem output ports, and for models that have conditionally executed subsystem output ports connected to S-functions.
- When using Simplified initialization mode, you must set both Mux blocks used to create bus signals, and Bus signal treated as vector to error on the Connectivity Diagnostics pane.
- For existing models, MathWorks recommends using the Model Advisor to migrate your model to the new settings. To migrate your model, run the following Model Advisor checks:
 - Check bus usage
 - Check consistency of initialization parameters for Outport and Merge blocks

For more information, see "Check consistency of initialization parameters for Outport and Merge blocks".

Dependencies

Selecting Classic enables the following parameters:

- Detect multiple driving blocks executing at the same time step
- Check undefined subsystem initial output
- Check preactivation output of execution context
- Check runtime output of execution context

Selecting Simplified disables these parameters, and automatically sets **Detect multiple driving blocks executing at the same time step** to error.

Command-Line Information

```
Parameter: UnderspecifiedInitializationDetection
Type: string
Value: 'Classic' | 'Simplified'
Default: 'Classic'
```

Recommended Settings

Application	Setting
Debugging	Simplified
Traceability	Simplified
Efficiency	Simplified
Safety precaution	Simplified

- "Conditional Subsystem Output Initialization"
- "Check consistency of initialization parameters for Outport and Merge blocks"
- Merge block

- Discrete-Time Integrator block
- "Conditional Subsystems"
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Check undefined subsystem initial output

Specify whether to display a warning if the model contains a conditionally executed subsystem in which a block with a specified initial condition drives an Outport block with an undefined initial condition

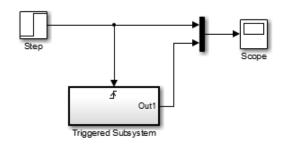
Settings

Default: On

🔽 On

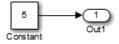
Displays a warning if the model contains a conditionally executed subsystem in which a block with a specified initial condition drives an Outport block with an undefined initial condition.

C Off

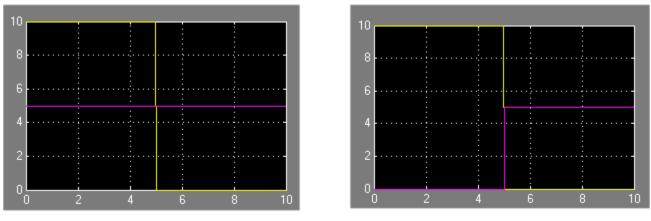

Does not display a warning.

Tips

- This situation occurs when a block with a specified initial condition, such as a Constant, Initial Condition, or Delay block, drives an Outport block with an undefined initial condition (**Initial output** parameter is set to []).
- Models with such subsystems can produce initial results (i.e., before initial activation of the conditionally executed subsystem) in the current release that differ from initial results produced in Release 13 or earlier releases.


Consider for example the following model.

ex_check_undefined_subsys_initial_output


🛅 ex_check_undefined_subsys_initial_output 🕨 🖻 Triggered Subsystem

This model does not define the initial condition of the triggered subsystem's output port.

The following figure compares the superimposed output of this model's Step block and the triggered subsystem in Release 13 and the current release.

Release 13

Current Release

Notice that the initial output of the triggered subsystem differs between the two releases. This is because Release 13 and earlier releases use the initial output of the block connected to the output port (i.e., the Constant block) as the triggered subsystem's initial output. By contrast, this release outputs **0** as the initial output of the triggered subsystem because the model does not specify the port's initial output.

Dependency

This parameter is enabled only if **Underspecified initialization detection** is set to **Classic**.

Command-Line Information

Parameter: CheckSSInitialOutputMsg
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	On

- Diagnosing Simulation Errors
- "Conditional Subsystems"
- "Underspecified initialization detection" on page 1-292
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Check preactivation output of execution context

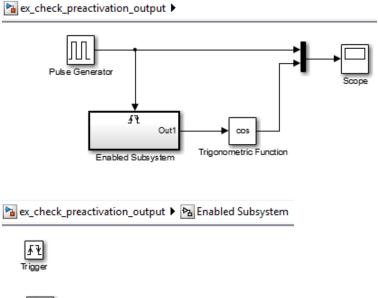
Specify whether to display a warning if Simulink software detects potential initial output differences from previous releases.

Settings

Default: Off

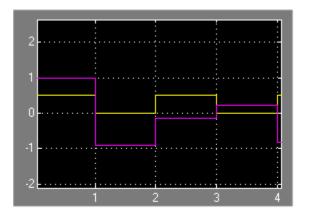
🗹 On

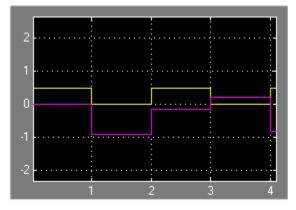
Displays a warning if Simulink software detects potential initial output differences from previous releases.


C Off

Does not display a warning.

Tips


- This diagnostic is triggered if the model contains a block that meets the following conditions:
 - The block produces nonzero output for zero input (e.g., a Cosine block).
 - The block is connected to an output of a conditionally executed subsystem.
 - The block inherits its execution context from that subsystem.
 - The Outport to which it is connected has an undefined initial condition, i.e., the Outport block's **Initial output** parameter is set to [].
- Models with blocks that meet these criteria can produce initial results (i.e., before the conditionally executed subsystem is first activated in the current release that differ from initial results produced in Release 13 or earlier releases.


Consider for example the following model.

The following figure compares the superimposed output of the Pulse Generator and cos block in Release 13 and the current release.

Release 13

Current Release

Note that the initial output of the cos block differs between the two releases. This is because in Release 13, the cos block belongs to the execution context of the root system and hence executes at every time step whereas in the current release, the cos block belongs to the execution context of the triggered subsystem and hence executes only when the triggered subsystem executes.

Dependency

This parameter is enabled only if **Underspecified initialization detection** is set to **Classic**.

Command-Line Information

Parameter: CheckExecutionContextPreStartOutputMsg
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	On

- Diagnosing Simulation Errors
- "Underspecified initialization detection" on page 1-292
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Check runtime output of execution context

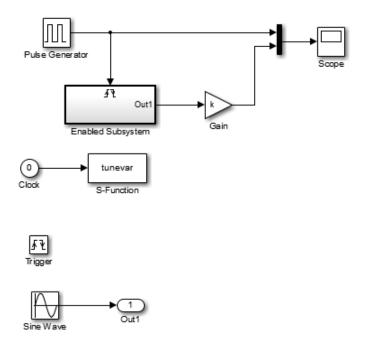
Specify whether to display a warning if Simulink software detects potential output differences from previous releases.

Settings

Default: Off

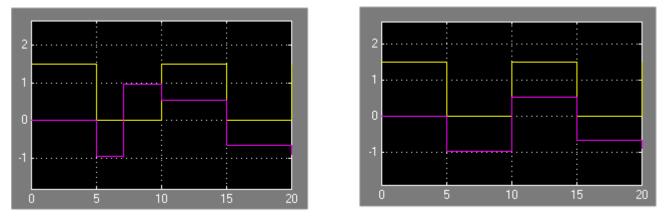
🗹 On

Displays a warning if Simulink software detects potential output differences from previous releases.


C Off

Does not display a warning.

Tips


- This diagnostic is triggered if the model contains a block that meets the following conditions:
 - The block has a tunable parameter.
 - The block is connected to an output of a conditionally executed subsystem.
 - The block inherits its execution context from that subsystem.
 - The Outport to which it is connected has an undefined initial condition, i.e., the Outport block's **Initial output** parameter is set to [].
- Models with blocks that meet these criteria can produce results when the parameter is tuned in the current release that differ from results produced in Release 13 or earlier releases.

Consider for example the following model.

In this model, the tunevar S-function changes the value of the Gain block's k parameter and updates the diagram at simulation time 7 (i.e., it simulates tuning the parameter).

The following figure compares the superimposed output of the model's Pulse Generator block and its Gain block in Release 13 and the current release.

Release 13

Current Release

Note that the output of the Gain block changes at time 7 in Release 13 but does not change in the current release. This is because in Release 13, the Gain block belongs to the execution context of the root system and hence executes at every time step whereas in the current release, the Gain block belongs to the execution context of the triggered subsystem and hence executes only when the triggered subsystem executes, i.e., at times 5, 10, 15, and 20.

Dependency

This parameter is enabled only if **Underspecified initialization detection** is set to **Classic**.

Command-Line Information

```
Parameter: CheckExecutionContextRuntimeOutputMsg
Type: string
Value: 'on' | 'off'
Default: 'on'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	On

- Diagnosing Simulation Errors
- "Underspecified initialization detection" on page 1-292
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Array bounds exceeded

Select the diagnostic action to take when blocks write data to locations outside the memory allocated to them.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- Use this option to check whether execution of each instance of a block during model simulation writes data to memory locations not allocated to the block. This can happen only if your model includes a user-written S-function that has a bug.
- Enabling this option slows down model execution considerably. Thus, you should enable it only if you suspect that your model contains a user-written S-function that has a bug.
- This option causes Simulink software to check whether a block writes outside the memory allocated to it during simulation. Typically this can happen only if your model includes a user-written S-function that has a bug.
- See Checking Array Bounds in "Error Handling" for more information on using this option.

Command-Line Information

Parameter: ArrayBoundsChecking Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Recommended Settings

Application	Setting
Debugging	warning
Traceability	No impact
Efficiency	none
Safety precaution	No impact

- Diagnosing Simulation Errors
- Writing S-Functions
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Model Verification block enabling

Enable model verification blocks in the current model either globally or locally.

Settings

Default: Use local settings

Use local settings

Enables or disables blocks based on the value of the **Enable assertion** parameter of each block. If a block's **Enable assertion** parameter is on, the block is enabled; otherwise, the block is disabled.

Enable All

Enables all model verification blocks in the model regardless of the settings of their **Enable assertion** parameters.

Disable All

Disables all model verification blocks in the model regardless of the settings of their **Enable assertion** parameters.

Dependency

Simulation and code generation ignore the **Model Verification block enabling** parameter when model verification blocks are inside a S-function.

Command-Line Information

Parameter: AssertControl Type: string Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll' Default: 'UseLocalSettings'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	Disable all

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Data Validity

Diagnostics Pane: Type Conversion

Γ	-Type Conversion					
	Unnecessary type conve	ersions:	none			•
	Vector/matrix block input	t conversion:	none			•
32-bit integer to single precision float conversion:			warning			-
	Fixed-point Constants					
	Detect underflow:	none	-	Detect overflow: none		.
	Detect precision loss:	none	•			
T II						

In this section
"Type Conversion Diagnostics Overview" on page 1-312
"Unnecessary type conversions" on page 1-313
"Vector/matrix block input conversion" on page 1-314
"32-bit integer to single precision float conversion" on page 1-316
"Detect underflow" on page 1-318
"Detect precision loss" on page 1-320
"Detect overflow" on page 1-322

Type Conversion Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects a data type conversion problem while compiling the model.

Configuration

Set the parameters displayed.

Tips

- To open the Type Conversion pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics > Type Conversion.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Diagnosing Simulation Errors
- Solver Diagnostics
- Sample Time Diagnostics
- Data Validity Diagnostics
- Connectivity Diagnostics
- Compatibility Diagnostics
- Model Referencing Diagnostics
- Saving Diagnostics
- Configuration Parameters Dialog Box
- Diagnostics Pane: Type Conversion

Unnecessary type conversions

Select the diagnostic action to take when Simulink software detects a Data Type Conversion block used where no type conversion is necessary.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

Command-Line Information

Parameter: UnnecessaryDatatypeConvMsg
Type: string
Value: 'none' | 'warning'
Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	warning

- Diagnosing Simulation Errors
- Data Type Conversion block
- Configuration Parameters Dialog Box
- Diagnostics Pane: Type Conversion

Vector/matrix block input conversion

Select the diagnostic action to take when Simulink software detects a vector-to-matrix or matrix-to-vector conversion at a block input.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

Simulink software converts vectors to row or column matrices and row or column matrices to vectors under the following circumstances:

- If a vector signal is connected to an input that requires a matrix, Simulink software converts the vector to a one-row or one-column matrix.
- If a one-column or one-row matrix is connected to an input that requires a vector, Simulink software converts the matrix to a vector.
- If the inputs to a block consist of a mixture of vectors and matrices and the matrix inputs all have one column or one row, Simulink software converts the vectors to matrices having one column or one row, respectively.

Command-Line Information

```
Parameter: VectorMatrixConversionMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Determining Output Signal Dimensions
- Configuration Parameters Dialog Box
- Diagnostics Pane: Type Conversion

Т

32-bit integer to single precision float conversion

Select the diagnostic action to take if Simulink software detects a 32-bit integer value was converted to a floating-point value.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

Tip

Converting a 32-bit integer value to a floating-point value can result in a loss of precision. See Working with Data Types for more information.

Command-Line Information

Parameter: Int32ToFloatConvMsg Type: string Value: 'none' | 'warning' Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	warning

See Also

• Diagnosing Simulation Errors

- Working with Data Types
- Configuration Parameters Dialog Box
- Diagnostics Pane: Type Conversion

Т

Detect underflow

Specifies diagnostic action to take when a fixed-point constant underflow occurs during simulation.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- This diagnostic applies only to fixed-point constants (net slope and net bias).
- Fixed-point constant underflow occurs when Simulink software encounters a fixed-point constant whose data type does not have enough precision to represent the ideal value of the constant because the ideal value is too small.
- When fixed-point constant underflow occurs, casting the ideal value to the data type causes the value of the fixed-point constant to become zero, and therefore to differ from its ideal value.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter:FixptConstUnderflowMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Net Slope and Net Bias Precision Issues
- Configuration Parameters Dialog Box
- Diagnostics Pane: Type Conversion

Detect precision loss

Specifies diagnostic action to take when a fixed-point constant precision loss occurs during simulation.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- This diagnostic applies only to fixed-point constants (net slope and net bias).
- Precision loss occurs when Simulink software converts a fixed-point constant to a data type which does not have enough precision to represent the exact value of the constant. As a result, the quantized value differs from the ideal value.
- Fixed-point constant precision loss differs from fixed-point constant overflow. Overflow occurs when the range of the parameter's data type, that is, the maximum value that it can represent, is smaller than the ideal value of the parameter.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter:FixptConstPrecisionLossMsg
Type: string
Value: 'none' | 'warning' | 'error'

Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Net Slope and Net Bias Precision Issues
- Configuration Parameters Dialog Box
- Diagnostics Pane: Type Conversion

T

Detect overflow

Specifies diagnostic action to take when a fixed-point constant overflow occurs during simulation.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- This diagnostic applies only to fixed-point constants (net slope and net bias).
- Overflow occurs when the Simulink software converts a fixed-point constant to a data type whose range is not large enough to accommodate the ideal value of the constant. The ideal value is either too large or too small to be represented by the data type. For example, suppose that the ideal value is 200 and the converted data type is int8. Overflow occurs in this case because the maximum value that int8 can represent is 127.
- Fixed-point constant overflow differs from fixed-point constant precision loss. Precision loss occurs when the ideal fixed-point constant value is within the range of the data type and scaling being used, but cannot be represented exactly.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter:FixptConstOverflowMsg

Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Net Slope and Net Bias Precision Issues
- Configuration Parameters Dialog Box
- Diagnostics Pane: Type Conversion

1

Diagnostics Pane: Connectivity

🔞 Configuration Parameters: untitled/Configuration (Active)			
Configuration Parameters: unt Select: 	titled/Configuration (Active) Connectivity Signals Signal label mismatch: Unconnected block input ports: warning Unconnected block output ports: warning Unconnected line: Buses Unspecified bus object at root Outport block: warning	- - - - -	
	Element name mismatch: warning Mux blocks used to create bus signals: error Bus signal treated as vector: none Non-bus signals treated as bus signals: none	• • •	
	Repair bus selections: Warn and repair Function calls Invalid function-call connection: Invalid function-call connection: error Context-dependent inputs: Enable all as errors	• •	
		ancel Help Appl	ly

In this section...

"Connectivity Diagnostics Overview" on page 1-326

"Signal label mismatch" on page 1-327

"Unconnected block input ports" on page 1-329

"Unconnected block output ports" on page 1-331

"Unconnected line" on page 1-333

In this section...

"Unspecified bus object at root Outport block" on page 1-335

"Element name mismatch" on page 1-337

"Mux blocks used to create bus signals" on page 1-339

"Bus signal treated as vector" on page 1-342

"Non-bus signals treated as bus signals" on page $1\mathchar`-345$

"Repair bus selections" on page 1-347

"Invalid function-call connection" on page 1-349

"Context-dependent inputs" on page 1-351

Connectivity Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects a problem with block connections while compiling the model.

Configuration

Set the parameters displayed.

Tips

- To open the Connectivity pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics > Connectivity.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Diagnosing Simulation Errors
- Solver Diagnostics
- Sample Time Diagnostics
- Data Validity Diagnostics
- Type Conversion Diagnostics
- Compatibility Diagnostics
- Model Referencing Diagnostics
- Saving Diagnostics
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Signal label mismatch

Select the diagnostic action to take when Simulink software detects different names being used for the same signal as that signal propagates through blocks in a model.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: SignalLabelMismatchMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

• "Signal Labels"

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Unconnected block input ports

Select the diagnostic action to take when the model contains a block with an unconnected input.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnconnectedInputMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Unconnected block output ports

Select the diagnostic action to take when the model contains a block with an unconnected output.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnconnectedOutputMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Unconnected line

Select the diagnostic action to take when the Model contains an unconnected line or an unmatched Goto or From block.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnconnectedLineMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

- Goto block
- From block
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Unspecified bus object at root Outport block

Select the diagnostic action to take while generating a simulation target for a referenced model if any of the model's root Outport blocks is connected to a bus but does not specify a bus object (see Simulink.Bus).

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

```
Parameter: RootOutportRequireBusObject
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

- Outport block
- Simulink.Bus
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Element name mismatch

Select the diagnostic action to take if the name of a bus element does not match the name specified by the corresponding bus object.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tip

You can use this diagnostic along with bus objects to ensure that your model meets bus element naming requirements imposed by some blocks, such as the Switch block.

Command-Line Information

Parameter: BusObjectLabelMismatch
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Mux blocks used to create bus signals

Select the diagnostic action to take if Simulink detects a Mux block that creates a virtual bus.

Settings

Default: error

none

Simulink software takes no action.

This option disables checking for Mux blocks used to create virtual bus signals.

warning

Simulink software displays a warning.

With this option, if Simulink detects a Mux block that creates a virtual bus during model update or simulation, it displays a message in the MATLAB Command Window that identifies the offending block. It does this for the first ten Mux block signals that it encounters that are treated as virtual buses.

error

Simulink terminates the simulation and displays an error message identifying the first Mux block it encounters that is used to create a virtual bus. If this option is selected, a Mux block with more than one input is allowed to output only a vector signal, and a Mux block with only one input is allowed to output only a scalar, vector, or matrix signal.

Tips

- This diagnostic detects use of Mux blocks to create virtual buses. The diagnostic considers a signal created by a Mux block to be a virtual bus if the signal meets either or both of the following conditions:
 - A Bus Selector block individually selects one or more of the signal elements (as opposed to the entire signal).

- The signal components have differing data types, numeric types (complex or real), dimensionality, or sampling modes (see the DSP System Toolbox[™] documentation for information on frame-based sampling).
- If you are using simplified initialization mode, you must set this diagnostic to error. For more information, see Underspecified initialization detection.
- You can identify Mux blocks used to create virtual buses using the Model Advisor **Check bus usage** check. For more information, see "Check bus usage".
- See "Prevent Bus and Mux Mixtures" for more information.

Dependency

Selecting error enables the following parameter:

• Bus signal treated as vector

Command-Line Information

```
Parameter: StrictBusMsg
Type: string
Value: 'none' | 'warning' | 'ErrorLevel1' |
'WarnOnBusTreatedAsVector' | 'ErrorOnBusTreatedAsVector'
Default: 'ErrorLevel1'
```

Due to the requirement that **Mux blocks used to create bus signals** be error before **Bus signal treated as vector** is enabled, one parameter, StrictBusMsg, can specify all permutations of the two controls. The parameter can have one of five values. The following table shows these values and the equivalent GUI control settings:

Value of StrictBusMsg (API)	Mux blocks used to create bus signals (GUI)	Bus signal treated as vector (GUI)
None	none	none
Warning	warning	none
ErrorLevel1	error	none
WarnOnBusTreatedAsVector	error	warning
ErrorOnBusTreatedAsVector	error	error

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- "Prevent Bus and Mux Mixtures"
- Diagnosing Simulation Errors
- Mux block
- Bus Creator block
- Bus Selector block
- Underspecified initialization detection
- "Check bus usage"
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Bus signal treated as vector

Select the diagnostic action to take when Simulink software detects a virtual bus signal that is used as a mux signal.

Settings

Default: warning

none

Disables checking for virtual buses used as muxes.

warning

Simulink software displays a warning if it detects a virtual bus used as a mux. This option does not enforce strict bus behavior.

error

Simulink software terminates the simulation and displays an error message when it builds a model that uses any virtual bus as a mux.

Tips

- This diagnostic detects the use of virtual bus signals used to specify muxes. The diagnostic considers a virtual bus signal to be used as a mux if it is input to a Demux block or to any block that can input a mux or a vector but is not formally defined as bus-capable. See Bus-Capable Blocks for details.
- Virtual buses can be used as muxes only when they contain no nested buses and all constituent signals have the same attributes. This practice is deprecated as of R2007a (V6.6) and may cease to be supported at some future time. MathWorks, therefore, discourages mixing virtual buses with muxes in new applications, and encourages upgrading existing applications to avoid such mixtures.
- If you are using simplified initialization mode, you must set this diagnostic to error. For more information, see Underspecified initialization detection.
- You can identify bus signals that are treated as a vectors using the Model Advisor **Check bus usage** check. For more information, see "Check bus usage".
- See "Prevent Bus and Mux Mixtures" for more information.

Dependency

This parameter is enabled only when **Mux blocks used to create bus signals** is set to error.

Command-Line Information

Parameter: StrictBusMsg
Type: string
Value: 'none' | 'warning' | 'ErrorLevel1' |
'WarnOnBusTreatedAsVector' | 'ErrorOnBusTreatedAsVector'
Default: 'warning'

Due to the requirement that **Mux blocks used to create bus signals** be error before **Bus signal treated as vector** is enabled, one parameter, StrictBusMsg, can specify all permutations of the two controls. The parameter can have one of five values. The following table shows these values and the equivalent GUI control settings:

Value of StrictBusMsg (API)	Mux blocks used to create bus signals (GUI)	Bus signal treated as vector (GUI)
None	none	none
Warning	warning	none
ErrorLevel1	error	none
WarnOnBusTreatedAsVector	error	warning
ErrorOnBusTreatedAsVector	error	error

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

1

- Avoiding Mux/Bus Mixtures
- Diagnosing Simulation Errors
- Bus-Capable Blocks
- Demux block
- Bus to Vector block
- Underspecified initialization detection
- "Check bus usage"
- Simulink.BlockDiagram.addBusToVector
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Non-bus signals treated as bus signals

Detect when Simulink implicitly converts a non-bus signal to a bus signal to support connecting the signal to a Bus Assignment or Bus Selector block.

Settings

Default: none

none

Implicitly converts non-bus signals to bus signals to support connecting the signal to a Bus Assignment or Bus Selector block.

warning

Simulink displays a warning, indicating that it has converted a non-bus signal to a bus signal. The warning lists the non-bus signals that Simulink converts.

error

Simulink terminates the simulation without performing converting non-bus signals to bus signals. The error message lists the non-bus signal that is being treated as a bus signal.

Tips

- Using a Mux block to create a virtual bus does not support strong type checking and increases the likelihood of runtime errors. In new applications, do not use Mux blocks to create bus signals. Consider upgrading existing applications to that use of Mux blocks.
 - Simulink generates a warning when you load a model created in a release prior to R2010a, if that model contains a Mux block to create a bus signal. For new models, Simulink generates an error.
- See Avoiding Mux/Bus Mixtures for more information.

Dependency

This parameter is enabled only when **Mux blocks used to create bus signals** is set to error.

Command-Line Information

```
Parameter: NonBusSignalsTreatedAsBus
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Avoiding Mux/Bus Mixtures
- Diagnosing Simulation Errors
- Bus-Capable Blocks
- Demux block
- Bus to Vector block
- Simulink.BlockDiagram.addBusToVector
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Repair bus selections

Repair broken selections in the Bus Selector and Bus Assignment block parameter dialogs due to upstream bus hierarchy changes.

Settings

 ${\bf Default:}$ Warn and repair

Warn and repair

Simulink displays a warning, indicating the block parameters for Bus Selector and Bus Assignment blocks that Simulink repaired to reflect upstream bus hierarchy changes.

Error without repair

Simulink terminates the simulation and displays an error message indicating the block parameters that you need to repair for Bus Selector and Bus Assignment blocks to reflect upstream bus hierarchy changes.

Tips

• See Avoiding Mux/Bus Mixtures for more information.

Dependency

This parameter is enabled only when **Mux blocks used to create bus signals** is set to error.

Command-Line Information

Parameter: BusNameAdapt Type: string Values: 'WarnAndRepair' | 'ErrorWithoutRepair' Default: 'WarnAndRepair'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Warn and repair

- Avoiding Mux/Bus Mixtures
- "Nest Buses"
- Diagnosing Simulation Errors
- Bus-Capable Blocks
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Invalid function-call connection

Select the diagnostic action to take if Simulink software detects incorrect use of a function-call subsystem.

Settings

Default: error

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- See the "Function-call subsystems" examples in the Simulink Subsystem Semantics library for examples of invalid uses of function-call subsystems.
- Setting this parameter to none or warning can lead to invalid simulation results.
- Setting this parameter to none or warning may cause Simulink software to insert extra delay operations.

Command-Line Information

```
Parameter: InvalidFcnCallConnMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Diagnosing Simulation Errors
- Subsystem Semantics library
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Context-dependent inputs

Select the diagnostic action to take when Simulink software has to compute any of a function-call subsystem's inputs directly or indirectly during execution of a call to a function-call subsystem.

Settings

Default: Enable all as errors

Enable all as errors

Enables this diagnostic for all function-call subsystems in this model. Issues an error for context-dependent inputs.

Enable all as warnings

Enables this diagnostic for all function-call subsystems in this model. Issues a warning for context-dependent inputs.

Use local settings

Issues a warning only if the corresponding diagnostic is selected on the function-call subsystem's parameters dialog box (see the documentation for the Subsystem block's parameter dialog box for more information).

Disable all

Disables this diagnostic for all function-call subsystems in this model.

Tips

- This situation occurs when executing a function-call subsystem can change its inputs.
- For examples of function-call subsystems, see the "Function-call systems" examples in the Simulink "Subsystem Semantics" library).
- To fix an error or warning generated by this diagnostic, use *one* of these approaches:
 - For the Inport block inside of the function-call subsystem, enable the Latch input for feedback signals of function-call subsystem outputs parameter.
 - Place a Function-Call Feedback Latch block on the feedback signal.

Т

For examples of using these approaches, open the sl_subsys_fcncallerr12 model and press the **more info** button.

Command-Line Information

```
Parameter: FcnCallInpInsideContextMsg
Type: string
Value: 'EnableAllAsError'| 'EnableAllAsWarning'|
'UseLocalSettings' | 'DisableAll'
Default: 'EnableAllAsError'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Enable all as errors

- "Create a Function-Call Subsystem"
- "Pass fixed-size scalar root inputs by value for code generation" on page 1-513
- Subsystem Semantics library
- Subsystem block
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Connectivity

Diagnostics Pane: Compatibility

Compatibility	
S-function upgrades needed:	none 🔹
Block behavior depends on frame status of signal:	warning
In this section	

"Compatibility Diagnostics Overview" on page $1\mathchar`-354$

"S-function upgrades needed" on page 1-355

"Block behavior depends on frame status of signal" on page 1-357 $\,$

T

Compatibility Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects an incompatibility between the current version of Simulink software and the model.

Configuration

Set the parameters displayed.

Tips

- To open the Compatibility pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics > Compatibility.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Diagnosing Simulation Errors
- Solver Diagnostics
- Sample Time Diagnostics
- Data Validity Diagnostics
- Type Conversion Diagnostics
- Connectivity Diagnostics
- Compatibility Diagnostics
- Model Referencing Diagnostics
- Saving Diagnostics
- Configuration Parameters Dialog Box
- Diagnostics Pane: Compatibility

S-function upgrades needed

Select the diagnostic action to take if Simulink software encounters a block that has not been upgraded to use features of the current release.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: SfunCompatibilityCheckMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

See Also

- Configuration Parameters Dialog Box
- Diagnostics Pane: Compatibility

Block behavior depends on frame status of signal

Select the diagnostic action to take when Simulink software encounters a block whose behavior depends on the frame status of a signal.

In future releases, frame status will no longer be a signal attribute. To prepare for this change, many blocks received a new parameter. This parameter allows you to specify whether the block treats its input as frames of data or as samples of data. Setting this parameter prepares your model for future releases by moving control of sample- and frame-based processing from the frame status of the signal to the block.

This diagnostic helps you identify whether any of the blocks in your model relies on the frame status of a signal. By knowing this status, you can determine whether the block performs sample- or frame-based processing. For more information, see the R2012a DSP System Toolbox Release Notes section about frame-based processing.

Note Frame-based processing requires a DSP System Toolbox license.

Settings

Default: warning

none

Simulink software takes no action.

warning

If your model contains any blocks whose behavior depends on the frame status of a signal, Simulink software displays a warning.

error

If your model contains any blocks whose behavior depends on the frame status of a signal, Simulink software terminates the simulation and displays an error message.

Tips

• Use the slupdate command to automatically update the blocks in your model.

Command-Line Information

```
Parameter: FrameProcessingCompatibilityMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Sample- and Frame-Based Concepts"
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Compatibility

Diagnostics Pane: Model Referencing

Model Referencing	
Model block version mismatch:	none
Port and parameter mismatch:	none
Model configuration mismatch:	none
Invalid root Inport/Outport block connection:	none
Unsupported data logging:	warning 💌

In this section...

"Model Referencing Diagnostics Overview" on page 1-360

"Model block version mismatch" on page 1-361

"Port and parameter mismatch" on page 1-363

"Model configuration mismatch" on page 1-365

"Invalid root Inport/Outport block connection" on page 1-367

"Unsupported data logging" on page 1-372

Model Referencing Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects an incompatibility relating to a model reference hierarchy.

Configuration

Set the parameters displayed.

Tips

- To open the Diagnostics: Model Referencing pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics > Model Referencing.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Referencing Models
- Diagnosing Simulation Errors
- Solver Diagnostics
- Sample Time Diagnostics
- Data Validity Diagnostics
- Type Conversion Diagnostics
- Connectivity Diagnostics
- Compatibility Diagnostics
- Saving Diagnostics
- Configuration Parameters Dialog Box
- Diagnostics Pane: Model Referencing

Model block version mismatch

Select the diagnostic action to take when loading or updating this model if Simulink software detects a mismatch between the version of the model used to create or refresh a Model block in this model and the referenced model's current version.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning and refreshes the Model block.

error

Simulink software displays an error message and does not refresh Model block.

Tip

If you have enabled display of referenced model version numbers on Model blocks for this model (see Displaying Referenced Model Version Numbers), Simulink software displays a version mismatch on the Model block icon, for example: Rev:1.0 != 1.2.

Command-Line Information

Parameter: ModelReferenceVersionMismatchMessage
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	No impact
Safety precaution	none

- Referencing Models
- Diagnosing Simulation Errors
- Displaying Referenced Model Version Numbers
- Configuration Parameters Dialog Box
- Diagnostics Pane: Model Referencing

Port and parameter mismatch

Select the diagnostic action to take if Simulink software detects a port or parameter mismatch during model loading or updating.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning and refreshes the Model block.

error

Simulink software displays an error message and does not refresh the Model block.

Tips

- Port mismatches occur when there is a mismatch between the I/O ports of a Model block and the root-level I/O ports of the model it references.
- Parameter mismatches occur when there is a mismatch between the parameter arguments recognized by the Model block and the parameter arguments declared by the referenced model.
- Model block icons can display a message indicating port or parameter mismatches. To enable this feature, from the parent model's Simulink Editor, select Display > Blocks > Block I/O Mismatch for Referenced Models.

Command-Line Information

```
Parameter: ModelReferenceIOMismatchMessage
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Referencing Models
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Model Referencing

Model configuration mismatch

Select the diagnostic action to take if the configuration parameters of a model referenced by this model do not match this model's configuration parameters or are inappropriate for a referenced model.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tip

Set this diagnostic to warning or error if you suspect that an inappropriate or mismatched configuration parameter may be causing your model to give the wrong result.

Command-Line Information

Parameter: ModelReferenceCSMismatchMessage
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	No impact
Safety precaution	warning

- Referencing Models
- Configuration Parameter Requirements
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Model Referencing

Invalid root Inport/Outport block connection

Select the diagnostic action to take if Simulink software detects invalid internal connections to this model's root-level Output port blocks.

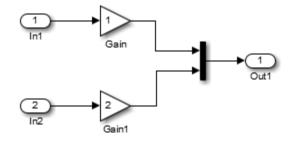
Settings

Default: none

none

Simulink software silently inserts hidden blocks to satisfy the constraints wherever possible.

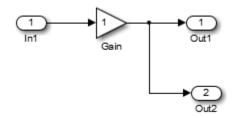
warning

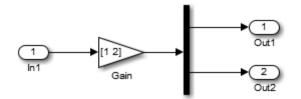

Simulink software warns you that a connection constraint has been violated and attempts to satisfy the constraint by inserting hidden blocks.

error

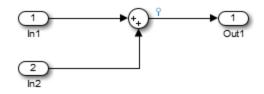
Simulink software terminates the simulation or code generation and displays an error message.

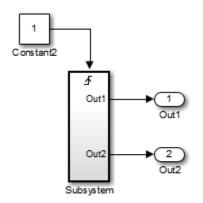
Tips

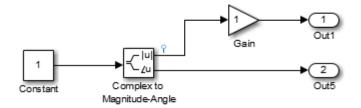

- In some cases (such as function-call feedback loops), automatically inserted hidden blocks may introduce delays and thus may change simulation results.
- Auto-inserting hidden blocks to eliminate root I/O problems stops at subsystem boundaries. Therefore, you may need to manually modify models with subsystems that violate any of the constraints below.
- The types of invalid internal connections are:
 - A root Output port is connected directly or indirectly to more than one nonvirtual block port:

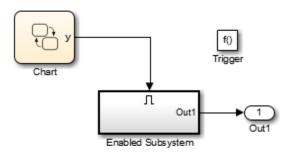

• A root Output port is connected to a Ground block:

- Two root Outport blocks are connected to the same block port:


 An Outport block is connected to some elements of a block output and not others:


• An Outport block is connected more than once to the same element:


• The signal driving the root outport is a test point:


• The output port has a constant sample time, but the driving block has a non-constant sample time:

• The driving block has a constant sample time and multiple output ports, and one of the other output ports of the block is a test point.

• The root output port is conditionally computed, you are using Function Prototype Control or a Encapsulated C++ target, and the Function Prototype specification or C++ target specification states that the output variable corresponding to that root outport is returned by value.

Command-Line Information

Parameter: ModelReferenceIOMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	error

- Referencing Models
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Diagnostics Pane: Model Referencing

Unsupported data logging

Select the diagnostic action to take if this model contains To Workspace blocks or Scope blocks with data logging enabled.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

- The default action warns you that Simulink software does not support use of these blocks to log data from referenced models.
- See "Models with Model Referencing: Overriding Signal Logging Settings" for information on how to log signals from a reference to this model.

Command-Line Information

Parameter: ModelReferenceDataLoggingMessage Type: string Value: 'none' | 'warning' | 'error' Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	error

- Referencing Models
- Diagnosing Simulation Errors
- "Models with Model Referencing: Overriding Signal Logging Settings"
- To Workspace block
- Scope block
- Configuration Parameters Dialog Box
- Diagnostics Pane: Model Referencing

Diagnostics Pane: Saving

- Saving	
Block diagram contains disabled library links:	warning
Block diagram contains parameterized library links:	warning 🗾

In this section...

"Saving Tab Overview" on page 1-375

"Block diagram contains disabled library links" on page 1-376

"Block diagram contains parameterized library links" on page 1-378

Saving Tab Overview

Specify the diagnostic actions that Simulink software takes when saving a block diagram containing disabled library links or parameterized library links.

Configuration

Set the parameters displayed.

Tips

- To open the Saving pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics > Saving.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Saving a Model
- Model Parameters
- Diagnosing Simulation Errors
- Solver Diagnostics
- Sample Time Diagnostics
- Data Validity Diagnostics
- Type Conversion Diagnostics
- Connectivity Diagnostics
- Compatibility Diagnostics
- Model Referencing Diagnostics
- Configuration Parameters Dialog Box
- Diagnostics Pane: Saving

Block diagram contains disabled library links

Select the diagnostic action to take when saving a model containing disabled library links.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning and saves the block diagram. The diagram may not contain the information you had intended.

error

Simulink software displays an error message. The model is not saved.

Tip

Use the Model Advisor Identify disabled library links check to find disabled library links.

Command-Line Information

Parameter: SaveWithDisabledLinksMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Disabling Library Links
- Identify disabled library links
- Saving a Model
- Model Parameters
- Configuration Parameters Dialog Box
- Diagnostics Pane: Saving

Т

Block diagram contains parameterized library links

Select the diagnostic action to take when saving a model containing parameterized library links.

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning and saves the block diagram. The diagram may not contain the in formation you had intended.

error

Simulink software displays an error message. The model is not saved.

Tips

• Use the Model Advisor Identify parameterized library links check to find parameterized library links.

Command-Line Information

Parameter: SaveWithParameterizedLinksMsg Type: string Value: 'none' | 'warning' | 'error' Default: 'none'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Identify parameterized library links
- Configuration Parameters Dialog Box
- Diagnostics Pane: Saving

T

Diagnostics Pane: Stateflow

Stateflow	
Unused data and events:	warning
Unexpected backtracking:	warning
Invalid input data access in chart initialization:	warning
No unconditional default transitions:	warning
Transition outside natural parent:	warning
Transition shadowing:	warning
Undirected event broadcasts:	warning
Transition action specified before condition action:	warning

In this section...

"Stateflow Diagnostics Overview" on page 1-381

"Unused data and events" on page 1-382

"Unexpected backtracking" on page 1-384

"Invalid input data access in chart initialization" on page 1-386

"No unconditional default transitions" on page 1-388

"Transition outside natural parent" on page 1-390

"Transition shadowing" on page 1-392

"Undirected event broadcasts" on page 1-394

"Transition action specified before condition action" on page 1-396

Stateflow Diagnostics Overview

Specify the diagnostic actions to take for detection of undesirable chart designs.

Configuration

Set the parameters displayed.

Tips

- To open the Stateflow pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Diagnostics > Stateflow.
- The options are typically to do nothing or to display a warning or an error message.
- A warning does not terminate a simulation, but an error does.

- Saving a Model
- Model Parameters
- Diagnosing Simulation Errors
- Solver Diagnostics
- Sample Time Diagnostics
- Data Validity Diagnostics
- Type Conversion Diagnostics
- Connectivity Diagnostics
- Compatibility Diagnostics
- Model Referencing Diagnostics
- Saving Diagnostics
- Configuration Parameters Dialog Box

Т

Unused data and events

Select the diagnostic action to take for detection of unused data and events in a chart. Removing unused data and events can minimize the size of your model.

Settings

Default: warning

none

No warning or error appears.

warning

A warning appears, with a link to delete the unused data or event in your chart.

error

An error appears and stops the simulation.

Tip

This diagnostic does not detect the following types of data and events:

- Machine-parented data
- Inputs and outputs of MATLAB functions
- Input events

Command-Line Information

Parameter: SFUnusedDataAndEventsDiag Type: string Value: 'none' | 'warning' | 'error' Default: 'warning'

Recommended Settings

Application	Setting
Debugging	warning
Traceability	No impact

Application	Setting
Efficiency	No impact (for simulation) none (for production code generation)
Safety precaution	warning

- Configuration Parameters Dialog Box
- Stateflow Diagnostics
- "Diagnostic for Detecting Unused Data"
- "Diagnostic for Detecting Unused Events"

Unexpected backtracking

Select the diagnostic action to take when a chart junction:

- Does not have an unconditional transition path to a state or a terminal junction
- Has multiple transition paths leading to it

This chart configuration can lead to undesired backtracking during simulation.

Settings

Default: warning

none

No warning or error appears.

warning

A warning appears, with a link to examples of undesired backtracking.

error

An error appears and stops the simulation.

Tip

To avoid undesired backtracking, consider adding an unconditional transition from the chart junction to a terminal junction.

Command-Line Information

Parameter: SFUnexpectedBacktrackingDiag Type: string Value: 'none' | 'warning' | 'error' Default: 'warning'

Recommended Settings

Application	Setting
Debugging	warning
Traceability	No impact
Efficiency	No impact (for simulation) No impact (for production code generation)
Safety precaution	error

- Configuration Parameters Dialog Box
- Stateflow Diagnostics
- "Best Practices for Creating Flow Charts"
- "Backtrack in Flow Charts"

Invalid input data access in chart initialization

Select the diagnostic action to take when a chart:

- Has the ExecuteAtInitialization property set to true
- Accesses input data on a default transition or associated state entry actions, which execute at chart initialization

In this chart configuration, blocks that connect to chart input ports might not initialize their outputs during initialization. Use this diagnostic to locate this configuration in your model and correct it.

Settings

Default: warning

none

No warning or error appears.

```
warning
```

A warning appears.

```
error
```

An error appears and stops the simulation.

Tip

In charts that do not contain states, the ExecuteAtInitialization property has no effect.

Command-Line Information

Parameter: SFInvalidInputDataAccessInChartInitDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	warning
Traceability	No impact
Efficiency	No impact (for simulation) No impact (for production code generation)
Safety precaution	error

- Configuration Parameters Dialog Box
- Stateflow Diagnostics
- "Execution of a Chart at Initialization"

No unconditional default transitions

Select the diagnostic action to take when a chart does not have an unconditional default transition to a state or a junction.

This chart configuration can cause inconsistency errors. Use this diagnostic to locate this configuration in your model and correct it. If a chart contains local event broadcasts or implicit events, detection of a state inconsistency might not be possible until run time.

Settings

Default: warning

none

No warning or error appears.

warning

A warning appears.

error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFNoUnconditionalDefaultTransitionDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	warning
Traceability	No impact
Efficiency	No impact (for simulation) none (for production code generation)
Safety precaution	error

- Configuration Parameters Dialog Box
- Stateflow Diagnostics
- "State Inconsistencies in a Chart"

Transition outside natural parent

Select the diagnostic action to take when a chart contains a transition that loops outside the parent state or junction.

Settings

Default: warning

none

No warning or error appears.

warning

A warning appears.

error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFTransitionOutsideNaturalParentDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	warning
Traceability	No impact
Efficiency	No impact (for simulation) none (for production code generation)
Safety precaution	error

See Also

• Configuration Parameters Dialog Box

• Stateflow Diagnostics

Transition shadowing

Select the diagnostic action to take when a chart contains multiple unconditional transitions that originate from the same state or junction.

Settings

Default: warning

none

No warning or error appears.

warning

A warning appears.

error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFUnconditionalTransitionShadowingDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application	Setting
Debugging	warning
Traceability	No impact
Efficiency	No impact (for simulation) none (for production code generation)
Safety precaution	error

See Also

• Configuration Parameters Dialog Box

- Stateflow Diagnostics
- "Detection of Transition Shadowing"

Undirected event broadcasts

Select the diagnostic action to take when a chart contains undirected local event broadcasts.

Undirected local event broadcasts can cause unwanted recursive behavior in a chart and inefficient code generation. Use this diagnostic to flag these types of event broadcasts and fix them.

Settings

Default: warning

none

No warning or error appears.

warning

A warning appears.

error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFUndirectedBroadcastEventsDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Application	Setting
Debugging	warning
Traceability	No impact
Efficiency	warning
Safety precaution	error

- Configuration Parameters Dialog Box
- Stateflow Diagnostics
- "Guidelines for Avoiding Unwanted Recursion in a Chart"
- "Broadcast Events to Synchronize States"

Transition action specified before condition action

Select the diagnostic action to take when a transition action executes before a condition action in a transition path with multiple transition segments.

When a transition with a specified transition action precedes a transition with a specified condition action in the same transition path, out-of-order execution can occur. Use this diagnostic to flag such behavior in your chart and fix it.

Settings

Default: warning

none

No warning or error appears.

warning

A warning appears.

error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFTransitionActionBeforeConditionDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Application	Setting
Debugging	warning
Traceability	warning
Efficiency	warning
Safety precaution	warning

- Configuration Parameters Dialog Box
- Stateflow Diagnostics
- "Transition Action Types"
- "Transitions"

Hardware Implementation Pane

Production har	dware												
Device vendo	r:		Generic		•	Device type:		Unspecified (assume 32-bit Generic) 🔻					
-Number of b	its					-Largest atomic							
char: 8	В	short:	16	int:	32	integer:	Char	•					
long:	32	long long:	64	float:	32								
double: 6	64	native:	32	pointer:	32	floating-point:	None	•					
Byte ordering	:		Unspecifie	ed	Ŧ	Signed integer division rounds to: Undefined							
Shift right	on a signed	l integer as a	rithmetic s	hift									
Enable long	g long												
Number of bits Largest atomic size char: 8 short: 16 int: 32 long: 32 long long: 64 float: 32 double: 64 native: 32 pointer: 32													
📝 Test hardw	vare is the s	same as prod	luction har	dware									

In this section
"Hardware Implementation Overview" on page 1-400
"Device vendor" on page 1-402
"Device type" on page 1-405
"Number of bits: char" on page 1-418
"Number of bits: short" on page 1-420
"Number of bits: int" on page 1-422
"Number of bits: long" on page 1-424
"Number of bits: long long" on page 1-425
"Number of bits: float" on page 1-427
"Number of bits: double" on page 1-428
"Number of bits: native" on page 1-429
"Number of bits: pointer" on page 1-431
"Largest atomic size: integer" on page 1-433

In this section
"Largest atomic size: floating-point" on page 1-435
"Byte ordering" on page 1-437
"Signed integer division rounds to" on page 1-439
"Shift right on a signed integer as arithmetic shift" on page 1-442
"Enable long long" on page 1-444
"Test hardware is the same as production hardware" on page 1-446
"Device vendor" on page 1-448
"Device type" on page 1-450
"Number of bits: char" on page 1-463
"Number of bits: short" on page 1-465
"Number of bits: int" on page 1-467
"Number of bits: long" on page 1-469
"Number of bits: long long" on page 1-470
"Number of bits: float" on page 1-473
"Number of bits: double" on page 1-474
"Number of bits: native" on page 1-475
"Number of bits: pointer" on page 1-477
"Largest atomic size: integer" on page 1-479
"Largest atomic size: floating-point" on page 1-481
"Byte ordering" on page 1-483
"Signed integer division rounds to" on page 1-485
"Shift right on a signed integer as arithmetic shift" on page 1-488
"Enable long long" on page 1-490

Hardware Implementation Overview

Describe the hardware characteristics for the modelled system, including how to set up production and test hardware settings for both simulation and code generation.

Note Hardware Implementation pane options do not control hardware or compiler behavior: their purpose is solely to describe hardware and compiler properties to MATLAB software, which uses the information to generate code for the platform that runs as efficiently as possible, and gives bit-true agreement for the results of integer and fixed-point operations in simulation, production code, and test code.

Configuration

- 1 Choose the **Device type** in the Production hardware subpane.
- **2** Set the parameters displayed for the selected device type.
- **3** Apply the changes.
- 4 Repeat as required for Test hardware.

Tips

- To open the Hardware Implementation pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Hardware Implementation.
- This pane applies to models of computer-based systems, such as embedded controllers.
- Specifying hardware characteristics enables simulation of the model to detect error conditions that could arise when executing code, such as hardware overflow.

- Configuring Hardware Properties
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Device vendor

Select the manufacturer of the hardware you will use to implement the production version of the system represented by this model.

Settings

Default: Generic

- AMD
- ARM Compatible
- ASIC/FPGA (Production hardware subpane only)
- Analog Devices
- Atmel
- Freescale
- Infineon
- Intel
- Microchip
- Renesas
- SGI
- STMicroelectronics
- Texas Instruments
- Generic

Tips

- Select the device vendor before you specify the hardware device used to define your system's constraints.
- If your production hardware does not match any of the listed vendors, select Generic.
- The **Device vendor** and **Device type** fields both share the same command line parameter: ProdHWDeviceType. When specifying this parameter from

the command line, separate the device vendor and device type values using the characters ->. For example: 'Intel->8051 Compatible'.

• If you have a Simulink Coder license, to add **Device vendor** and **Device type** values to the default set that is displayed on the **Hardware Implementation** pane, see "Register Additional Device Vendor and Device Type Values" in the Simulink Coder documentation.

Dependencies

Selecting a value for this parameter allows you to view a list of supported devices from the selected vendor in the **Device type** drop-down menu.

Command-Line Information

Parameter: ProdHWDeviceType Type: string Value: any valid value (see tips) Default: 'Generic->Unspecified (assume 32-bit Generic)'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Device type (production hardware)
- Device vendor (test hardware)
- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box

• Hardware Implementation Pane

Device type

Select the type of hardware you will use to implement the production version of the system represented by this model.

Settings

Default: Unspecified (assume 32 bit Generic)

Generic options:

- 16-bit Embedded Processor
- 32-bit Embedded Processor
- 32-bit Real-Time Simulator
- 32-bit x86 compatible
- 64-bit Embedded Processor (LLP64)
- 64-bit Embedded Processor (LP64)
- 8-bit Embedded Processor
- Custom
- MATLAB Host Computer (available as a **Test hardware** device and, for MATLAB Coder configuration, as a **Production hardware** device)
- Unspecified (assume 32-bit Generic)

AMD[®] options:

- Athlon 64
- K5/K6/Athlon

ARM[®] Compatible options:

- ARM 10
- ARM 11
- ARM 7
- ARM 8

- ARM 9
- ARM Cortex

ASIC/FPGA options: (Production hardware subpane only)

• ASIC/FPGA

Analog Devices[™] options:

- Blackfin
- SHARC
- TigerSHARC

Atmel[®] options:

• AVR

Freescale[™] options:

- 32-bit PowerPC
- 68332
- 68HC08
- 68HC11
- ColdFire
- DSP563xx (16-bit mode)
- HC(S)12
- MPC52xx
- MPC5500
- MPC55xx
- MPC5xx
- MPC7400
- MPC7xxx

- MPC82xx
- MPC83xx
- MPC85xx
- MPC86xx
- MPC8xx
- S12x

Infineon[®] options:

- C16x, XC16x
- TriCore

Intel[®] options:

- 8051 Compatible
- x86 64
- x86/Pentium

Microchip:

- PIC18
- dsPIC

Renesas[®] options:

- M16C
- M32C
- R8C/Tiny
- SH-2/3/4
- V850

SGI:

• UltraSPARC IIi

STMicroelectronics[®]:

• ST10/Super10

Texas Instruments[™] options:

- C2000
- C5000
- C6000
- MSP430
- TMS470

Tips

- Select the device vendor before you specify the hardware device type.
- Selecting a device type specifies the hardware device to define your system's constraints:
 - Default hardware properties appear as the initial values.
 - Parameters with only one possible value cannot be changed.
 - Parameters with more than one possible value provide a list of legal values.
 - Static values for each device type are displayed in the following table.
 - Parameters that you can modify are identified with an **x**.

Key:	float and double (not listed) alw	ays equal a	32 and 64, respectively								
	pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int										
	Rounds to = Signed integer division rounds to										
	Shift right = Shift right on a signed integer as arithmetic shift										
Device vendor / Device type	Number of bits	Largest atomic size	Byte Roundshift Enable ordering to right long long								
	char short int long long native	int float									

Generic

Unspecified (assume 32-bit Generic) (default)	8	16	32	32	64	32	X	x	Unspecif	exd	Set	Clear
Custom	x	x	x	х	х	х	x	х	х	х	х	x
16-bit Embedded Processor	8	16	16	32	64	16	х	X	х	X	Set	Clear
32-bit Embedded Processor	8	16	32	32	64	32	x	X	х	х	Set	Clear
32-bit Real Time Simulator	8	16	32	32	64	32	х	X	x	X	Set	Clear
32-bit x86 compatible	8	16	32	32	64	32	x	Х	Little Endian	Zero	Set	Clear

Key:	floa	float and double (not listed) always equal 32 and 64, respectively													
		pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int													
	Rou	Rounds to = Signed integer division rounds to													
	Shif	Shift right = Shift right on a signed integer as arithmetic shift													
Device vendor / Device type	Nur	nber	of b	oits			Largest atomic size		Byte ordering	Round to	ls hift right	Enable long long			
	cha	r shoi	tint	long	long	native	int	float							
64-bit Embedded Processor (LLP64)	8	16	32	32	64	32	х	x	x	X	Set	x			
64-bit Embedded Processor (LP64)	8	16	32	64	64	64	X	x	x	X	Set	х			
8-bit Embedded Processor	8	16	16	32	64	8	x	X	X	x	Set	Clear			
MATLAB Host Computer	8	16	32	Host specifi value (32 or 64)	64 c	Host specifi value (32 or 64)	x	x	Little Endian	X	Set	Host specific value (Set or Clear)			
AMD															
Athlon 64	8	16	32	64	64	64	X	x	Little Endian	X	Set	X			
K5/K6/Athlor	18	16	32	32	64	32	х	х	Little Endian	х	Set	Х			
ARM Compatib	ole														

Key:	floo	float and double (not listed) always equal 32 and 64, respectively													
		pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int													
	Rou	Rounds to = Signed integer division rounds to Shift right = Shift right on a signed integer as arithmetic shift													
	Shif														
Device vendor / Device type	Nur	nber	of b	oits			Largest atomic size		Byte ordering		l\$ hift right	Enable long long			
	cha	r shor	tint	long	long	native	int	float							
ARM 7/8/9/10	8	16	32	32	64	32	Lon	gFloat	х	X	X	х			
ARM 11	8	16	32	32	64	32	Lon	gDouble	x	х	х	x			
ARM Cortex	8	16	32	32	64	32	Lon	gDouble	x	x	х	x			
ASIC/FPGA					•										
ASIC/FPGA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Analog Devi	ces														
Blackfin	8	16	32	32	64	32	Lon	gDouble	Little Endian	Zero	Set	х			
SHARC	32	32	32	32	64	32	Lon	gDouble	Big Endian	Zero	Set	х			
TigerSHARC	32	32	32	32	64	32	Lon	gDouble	Little Endian	Zero	Set	X			
Atmel					•										
AVR	8	16	16	32	64	8	х	x	Little Endian	Zero	Set	Х			
Freescale															
32-bit PowerPC	8	16	32	32	64	32	Lon	gDouble	Big Endian	Zero	Set	Х			
68332	8	16	32	32	64	32	х	х	Big Endian	х	Set	Х			

Key:	floa	float and double (not listed) always equal 32 and 64, respectively													
		pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int Rounds to = Signed integer division rounds to Shift right = Shift right on a signed integer as arithmetic shift													
	Rou														
	Shif														
Device vendor / Device type	Nur	nber	of b	oits				gest mic	Byte ordering		d s hift right	Enable long long			
	cha	r shor	tint	long	long	native	int	float							
68HC08	8	16	16	32	64	8	х	x	Big Endian	X	Set	X			
68HC11	8	16	16	32	64	8	х	x	Big Endian	х	Set	х			
ColdFire	8	16	32	32	64	32	х	х	Big Endian	Zero	Set	X			
DSP563xx (16-bit mode)	8	16	16	32	64	16	x	х	X	X	Set	x			
HC(S)12	8	16	16	32	64	16	x	x	Big Endian	х	Set	X			
MPC52xx, MPC5500, MPC55xx, MPC5xx, MPC7xxx, MPC82xx, MPC83xx, MPC86xx, MPC8xx	8	16	32	32	64	32	Lon	gDouble	x	Zero	Set	x			
MPC7400	8	16	32	32	64	32	Lon	gDouble	X	Zero	Set	Clear			
MPC85xx	8	16	32	32	64	32	Lon	gFloat	X	Zero	Set	х			

Кеу:	floa	float and double (not listed) always equal 32 and 64, respectively													
		pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int													
	Rou	Rounds to = Signed integer division rounds to Shift right = Shift right on a signed integer as arithmetic shift													
	Shif														
Device vendor / Device type	Nur	nber	of b	oits			Largest atomic size		Byte ordering		ls hift right	Enable long long			
	cha	r shoi	tint	long	long	native	int	float							
\$12x	8	16	16	32	64	16	x	x	Big Endian	х	Set	X			
Infineon															
C16x, XC16x	8	16	16	32	64	16	х	x	Little Endian	Zero	Set	х			
TriCore	8	16	32	32	64	32	x	x	Little Endian	х	Set	х			
Intel															
8051 Compatible	8	16	16	32	64	8	X	x	x	X	Clear	x			
x86/64	8	16	32	64	64	64	X	x	Little Endian	x	Set	X			
x86/Pentium	8	16	32	32	64	32	х	x	Little Endian	х	Set	Х			
Microchip															
PIC18	8	16	16	32	64	8	х	x	Little Endian	Zero	Set	Х			
dsPIC	8	16	16	32	64	16	x	х	Little Endian	Zero	Set	X			

Key:	y: float and double (not listed) always equal 32 and 64, respectively						/							
		pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int												
	Rou	Rounds to = Signed integer division rounds to Shift right = Shift right on a signed integer as arithmetic shift												
	Shif													
Device vendor / Device type	Number of bits			Largest atomic size		Byte ordering	Round I to	l s hift right	Enable long long					
	cha	r shoi	tint	long	long	native	int	float						
Renesas														
M16C	8	16	16	32	64	16	x	x	Little Endian	x	x	х		
M32C	8	16	x	32	64	X	x	x	Little Endian	x	x	х		
R8C/Tiny	8	16	16	32	64	16	х	x	Little Endian	x	x	х		
SH-2/3/4	8	16	32	32	64	32	х	х	x	х	х	x		
V850	8	16	32	32	64	32	x	х	x	х	х	x		
SGI														
UltraSPARC IIi	8	16	32	32	64	32	х	х	Big Endian	X	Set	х		
STMicroelect	troni	cs												
ST10/Super10	8	16	16	32	64	16	x	x	Little Endian	Zero	Set	х		
Texas Instru	ument	S					•							
C2000	16	16	16	32	64	16	Int	None	x	Zero	Set	х		
C5000	16	16	16	32	64	16	Int	None	Big Endian	Zero	Set	х		
C6000	8	16	32	40	64	32	Int	None	x	Zero	Set	x		

Key:	floa	float and double (not listed) always equal 32 and 64, respectively						/				
	pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int											
	Rou	nds t	o =	Signed	d integ	er divis	ion	rounds	to			
	Shift right = Shift right on a signed integer as arithmetic shift											
Device vendor / Device type	Number of bits				Largest Byte atomic order size		Byte ordering	Round s hift ing to right	Enable long long			
	cha	r shor	tint	long	long	native	int	float				
MSP430	8	16	16	32	64	16	х	х	Little Endian	Zero	Set	х
TMS470	8	16	32	32	64	x	x	х	x	x	x	x

- If your production hardware does not match any of the listed types, select Unspecified (assume 32-bit Generic) if it has the characteristics of a generic 32-bit microprocessor; otherwise select Custom.
- The **Device vendor** and **Device type** fields both share the same command line parameter: ProdHWDeviceType. When specifying this parameter from the command line, separate the device vendor and device type values using the characters ->. For example: 'Intel->8051 Compatible'.
- If you have a Simulink Coder license, to add **Device vendor** and **Device type** values to the default set that is displayed on the **Hardware Implementation** pane, see "Register Additional Device Vendor and Device Type Values" in the Simulink Coder documentation.

Dependencies

The options available in the drop-down menu are determined by the **Device vendor** parameter.

Selecting ASIC/FPGA enables the Test hardware subpane.

Selecting any other device type sets the following device-specific parameters:

• Number of bits: char

Т

- Number of bits: short
- Number of bits: int
- Number of bits: long
- Number of bits: long long
- Number of bits: float
- Number of bits: double
- Number of bits: native
- Number of bits: pointer
- Largest atomic size: integer
- Largest atomic size: floating-point
- Byte ordering
- Signed integer division rounds to
- Shift right on a signed integer as arithmetic shift
- Enable long long

Whether you can modify a device-specific parameter varies according to device type. Parameters that cannot be modified for a device are greyed out in the GUI display.

Command-Line Information

Parameter: ProdHWDeviceType Type: string Value: any valid value (see tips) Default: 'Generic->Unspecified (assume 32-bit Generic)'

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- Device vendor (production hardware)
- Device type (test hardware)
- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: char

Describe the character bit length for the production hardware.

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdBitPerChar Type: integer Value: any valid value Default: 8

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: short

Describe the data bit length for the production hardware.

Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdBitPerShort Type: integer Value: any valid value Default: 16

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: int

Describe the data integer bit length for the production hardware.

Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdBitPerInt Type: integer Value: any valid value Default: 32

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: long

Describe the data bit lengths for the production hardware.

Settings

Default: 32

Minimum: 32

Maximum: 64

Enter a value between 32 and 64.

Tip

All values must be a multiple of 8 and between 32 and 64.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdBitPerLong Type: integer Value: any valid value Default: 32

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: long long

Describe the length in bits of the C long long data type that the production hardware supports.

Settings

Default: 64

The number of bits used to represent the C long long data type.

Tips

- Use the C long long data type only if your C compiler supports long long.
- You can change the value of this parameter for custom targets only. For custom targets, all values must be a multiple of 8 and between 64 and 128.

Dependencies

• Enable long long enables use of this parameter.

- The value of this parameter must be greater than or equal to the value of **Number of bits: long**.
- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdBitPerLongLong Type: integer Value: any valid value Default: 64

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- "Enable long long" on page 1-444
- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: float

Describe the bit length of floating-point data for the production hardware (read-only)

Settings

Default: 32

Always equals 32.

Command-Line Information

Parameter: ProdBitPerFloat Type: integer Value: 32 (read-only) Default: 32

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: double

Describe the bit-length of double data for the production hardware (read-only).

Settings

Default: 64

Always equals 64.

Command-Line Information

Parameter: ProdBitPerDouble Type: integer Value: 64 (read only) Default: 64

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: native

Describe the microprocessor native word size for the production hardware.

Settings

Default: 32

Minimum: 8

Maximum: 64

Enter a value between 8 and 64.

Tip

All values must be a multiple of 8.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdWordSize Type: integer Value: any valid value Default: 32

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: pointer

Describe the bit-length of pointer data for the production hardware (read-only).

Settings

Default: 64 for 64-bit devices; otherwise, matches the setting for "Number of bits: int" on page 1-422

Minimum: 8

Maximum: 32

Command-Line Information

Parameter: ProdBitPerPointer Type: integer Value: any valid value (read-only) Default: 64 for 64-bit devices; otherwise, matches the setting for ProdBitPerInt

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box

• Hardware Implementation Pane

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored on the production hardware.

Settings

Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and stored on the production hardware.

Short

Specifies that short is the largest integer data type that can be atomically loaded and stored on the production hardware.

Int

Specifies that int is the largest integer data type that can be atomically loaded and stored on the production hardware.

Long

Specifies that long is the largest integer data type that can be atomically loaded and stored on the production hardware.

LongLong

Specifies that long long is the largest integer data type that can be atomically loaded and stored on the production hardware.

Tip

This parameter is used, where possible, to optimize away unnecessary double-buffering or unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

1

• You can set this parameter to LongLong only if the production hardware supports the C long long data type and you have selected **Enable long long**.

Command-Line Information

```
Parameter: ProdLargestAtomicInteger
Type: string
Value: 'Char' | 'Short' | 'Int' | 'Long' | 'LongLong'
Default: 'Char'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and stored on the production hardware.

Settings

Default: None

Float

Specifies that float is the largest floating-point data type that can be atomically loaded and stored on the production hardware.

Double

Specifies that double is the largest floating-point data type that can be atomically loaded and stored on the production hardware.

None

Specifies that there is no applicable setting or not to use this parameter in generating multirate code.

Tip

This parameter is used, where possible, to optimize away unnecessary double-buffering or unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdLargestAtomicFloat
Type: string
Value: 'Float' | 'Double' | 'None'
Default: 'None'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Byte ordering

Describe the byte ordering for the production hardware.

Settings

Default: Unspecified

Unspecified

Specifies that the code determines the endianness of the hardware. This is the least efficient choice.

Big Endian

The most significant byte appears first.

Little Endian

The least significant byte appears first.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdEndianess Type: string Value: 'Unspecified' | 'LittleEndian' | 'BigEndian' Default: 'Unspecified'

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Signed integer division rounds to

Describe how to produce a signed integer quotient for the production hardware.

Settings

Default: Undefined

Undefined

Choose this option if neither Zero nor Floor describes the compiler's behavior, or if that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer to negative infinity.

Tips

- Use the **Integer rounding mode** parameter on your model's blocks to simulate the rounding behavior of the C compiler that you use to compile code generated from the model. This setting appears on the **Signal Attributes** pane of the parameter dialog boxes of blocks that can perform signed integer arithmetic, such as the Product block.
- For most blocks, the value of **Integer rounding mode** completely defines rounding behavior. For blocks that support fixed-point data and the **Simplest** rounding mode, the value of **Signed integer division rounds to** also affects rounding. For details, see "Rounding".
- See Hardware Implementation Options in the Simulink Coder documentation for information on how this option affects code generation.
- The following table illustrates the compiler behavior described by the options for this parameter.

N	D	ldeal N/D	Zero	Floor	Undefined
33	4	8.25	8	8	8
- 33	4	-8.25	- 8	- 9	-8 or -9
33	- 4	-8.25	- 8	- 9	-8 or -9
- 33	- 4	8.25	8	8	8 or 9

Dependency

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdIntDivRoundTo Type: string Value: 'Floor' | 'Zero' | 'Undefined' Default: 'Undefined'

Recommended settings

Application	Setting
Debugging	No impact for simulation and during development. Undefined for production code generation.
Traceability	No impact for simulation and during development. Zero or Floor for production code generation.

Application	Setting
Efficiency	No impact for simulation and during development. Zero for production code generation.
Safety precaution	No impact for simulation and during development. Floor for production code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Shift right on a signed integer as arithmetic shift

Describe how your compiler rounds the result of two signed integers for the production hardware.

Settings

Default: On

🔽 On

Generates simple efficient code whenever the Simulink model performs arithmetic shifts on signed integers.

C Off

Generates fully portable but less efficient code to implement right arithmetic shifts.

Tips

- Select this parameter if the C compiler implements a signed integer right shift as an arithmetic right shift.
- An arithmetic right shift fills bits vacated by the right shift with the value of the most significant bit, which indicates the sign of the number in twos complement notation.

Dependency

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: ProdShiftRightIntArith
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On
Safety precaution	No impact

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Т

Enable long long

Specify that your C compiler supports the C long long data type. Most C99 compilers support long long.

Settings

Default: Off

🗹 On

Enables use of C long long data type for both simulation and code generation on the production hardware.

C Off

Disables use of C long long data type for simulation or code generation on the production hardware.

Tips

- This parameter is enabled only if the selected production hardware supports the C long long data type.
- If your compiler does not support C long long, do not select this parameter.

Dependencies

This parameter enables Number of bits: long long.

Command-Line Information

Parameter: ProdLongLongMode Type: string Value: 'on' | 'off' Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- "Number of bits: long long" on page 1-425
- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Т

Test hardware is the same as production hardware

Specify whether the test hardware differs from the production hardware.

Settings

Default: On

🗹 On

Specifies that the hardware used to test the code generated from the model is the same as the production hardware, or has the same characteristics.

C Off

Specifies that the hardware used to test the code generated from the model has different characteristics than the production hardware.

Tips

- You can generate code that runs on the test hardware but behaves as if it had been generated for and executed on the deployment hardware.
- The **Production hardware** subpane specifies the deployment hardware properties. The **Test hardware** subpane is used to specify the test hardware properties.

Dependency

Enables the **Test hardware** subpane.

Command-Line Information

Parameter: ProdEqTarget Type: string Value: 'on' | 'off' Default: 'on'

Recommended settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

More information

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Device vendor

Select the manufacturer of the hardware that will be used to test the code generated from the model.

Settings

Default: Generic

- AMD
- ARM Compatible
- ASIC/FPGA (Production hardware subpane only)
- Analog Devices
- Atmel
- Freescale
- Infineon
- Intel
- Microchip
- Renesas
- SGI
- STMicroelectronics
- Texas Instruments
- Generic

Tips

- Select the device vendor before you specify the hardware device used to define your system's constraints.
- If your test hardware does not match any of the listed vendors, select Generic.
- The **Device vendor** and **Device type** fields both share the same command line parameter: TargetHWDeviceType. When specifying this parameter

from the command line, separate the device vendor and device type values using the characters ->. For example: 'Intel->8051 Compatible'.

• If you have a Simulink Coder license, to add **Device vendor** and **Device type** values to the default set that is displayed on the **Hardware Implementation** pane, see "Register Additional Device Vendor and Device Type Values" in the Simulink Coder documentation.

Dependencies

Selecting a value for this parameter allows you to view a list of supported devices from the selected vendor in the **Device type** drop-down menu.

Command-Line Information

Parameter: TargetHWDeviceType Type: string Value: any valid value (see tips) Default: 'Generic->Unspecified (assume 32-bit Generic)'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Device type (test hardware)
- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Device type

Select the type of hardware that will be used to test the code generated from the model.

Settings

Default: Unspecified (assume 32 bit Generic)

Generic options:

- 16-bit Embedded Processor
- 32-bit Embedded Processor
- 32-bit Real-Time Simulator
- 32-bit x86 compatible
- 64-bit Embedded Processor (LLP64)
- 64-bit Embedded Processor (LP64)
- 8-bit Embedded Processor
- Custom
- MATLAB Host Computer (available as a **Test hardware** device and, for MATLAB Coder configuration, as a **Production hardware** device)
- Unspecified (assume 32-bit Generic)

AMD options:

- Athlon 64
- K5/K6/Athlon

ARM Compatible options:

- ARM 10
- ARM 11
- ARM 7
- ARM 8

- ARM 9
- ARM Cortex

ASIC/FPGA options: (Production hardware subpane only)

• ASIC/FPGA

Analog Devices options:

- Blackfin
- SHARC
- TigerSHARC

Atmel options:

• AVR

Freescale options:

- 32-bit PowerPC
- 68332
- 68HC08
- 68HC11
- ColdFire
- DSP563xx (16-bit mode)
- HC(S)12
- MPC52xx
- MPC5500
- MPC55xx
- MPC5xx
- MPC7400
- MPC7xxx

- MPC82xx
- MPC83xx
- MPC85xx
- MPC86xx
- MPC8xx
- S12x

Infineon options:

- C16x, XC16x
- TriCore

Intel options:

- 8051 Compatible
- x86 64
- x86/Pentium

Microchip:

- PIC18
- dsPIC

Renesas options:

- M16C
- M32C
- R8C/Tiny
- SH-2/3/4
- V850

SGI:

• UltraSPARC IIi

STMicroelectronics:

• ST10/Super10

Texas Instruments options:

- C2000
- C5000
- C6000
- MSP430
- TMS470

Tips

- Select the device vendor before you specify the hardware device type.
- Selecting a device type specifies the hardware device to define your system's constraints:
 - Default hardware properties appear as the initial values.
 - Parameters with only one possible value cannot be changed.
 - Parameters with more than one possible value provide a list of legal values.
 - Static values for each device type are displayed in the following table.
 - Parameters that you can modify are identified with an x.

Key:	float and double (not listed) alw	float and double (not listed) always equal 32 and 64, respectively								
	pointer (not listed) equals 64 for the setting for int	pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int								
	Rounds to = Signed integer divis	ounds to = Signed integer division rounds to								
	Shift right = Shift right on a sign	ihift right = Shift right on a signed integer as arithmetic shift								
Device vendor / Device type	Number of bits	Largest atomic size	Byte Round Shift Enable ordering to right long long							
	char short int long long native	int float								

Generic

Unspecified (assume 32-bit Generic) (default)	8	16	32	32	64	32	X	x	Unspecif	ext	Set	Clear
Custom	x	x	x	х	х	х	x	х	x	х	x	x
16-bit Embedded Processor	8	16	16	32	64	16	x	х	х	Х	Set	Clear
32-bit Embedded Processor	8	16	32	32	64	32	x	х	х	Х	Set	Clear
32-bit Real Time Simulator	8	16	32	32	64	32	x	х	х	х	Set	Clear
32-bit x86 compatible	8	16	32	32	64	32	x	х	Little Endian	Zero	Set	Clear

Key:	floc	ıt and	do	uble (n	ot liste	ed) alw	ays	equal (32 and 64	, respe	ectively	/			
	pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int														
	Rou	nds to	o =	Signed	l integ	er divis	ion	rounds	to						
	Shift right = Shift right on a signed integer as arithmetic shift														
Device vendor / Device type	Nur	nber	of b	oits				gest mic	Byte ordering		ls hift right	Enable long long			
	cha	r shor	tint	long	long	native	int	float							
64-bit Embedded Processor (LLP64)	8	16	32	32	64	32	X	X	X	X	Set	X			
64-bit Embedded Processor (LP64)	8	16	32	64	64	64	X	x	x	X	Set	x			
8-bit Embedded Processor	8	16	16	32	64	8	x	x	X	x	Set	Clear			
MATLAB Host Computer	8	16	32	Host specifi value (32 or 64)	64 c	Host specifi value (32 or 64)	x	x	Little Endian	X	Set	Host specific value (Set or Clear)			
AMD									•						
Athlon 64	8	16	32	64	64	64	X	x	Little Endian	X	Set	X			
K5/K6/Athlor	18	16	32	32	64	32	х	х	Little Endian	Х	Set	х			
ARM Compatib	ole														

Кеу:	floa	t and	do	uble (r	not liste	ed) alw	ays	equal 3	2 and 64	, respe	ectively	/			
		nter (ı settin			equals	s 64 for	64-	bit dev	ices; othe	rwise,	match	es			
	Rou	nds t	o =	Signe	d integ	er divis	ion	rounds	to						
	Shif	Shift right = Shift right on a signed integer as arithmetic shift													
Device vendor / Device type	Nur	Number of bits						gest mic	Byte ordering	Round I to	ls hift right	Enable long long			
	cha	r shor	tint	long	long	native	int	float							
ARM 7/8/9/10	8	16	32	32	64	32	Lon	gFloat	X	X	х	Х			
ARM 11	8	16	32	32	64	32	Lon	gDouble	X	х	х	х			
ARM Cortex	8	16	32	32	64	32	Lon	gDouble	X	х	х	х			
ASIC/FPGA						1									
ASIC/FPGA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Analog Devi	ces														
Blackfin	8	16	32	32	64	32	Lon	gDouble	Little Endian	Zero	Set	X			
SHARC	32	32	32	32	64	32	Lon	gDouble	Big Endian	Zero	Set	X			
TigerSHARC	32	32	32	32	64	32	Lon	gDouble	Little Endian	Zero	Set	X			
Atmel						1									
AVR	8	16	16	32	64	8	х	х	Little Endian	Zero	Set	X			
Freescale															
32-bit PowerPC	8	16	32	32	64	32	Lon	gDouble	Big Endian	Zero	Set	X			
68332	8	16	32	32	64	32	х	x	Big Endian	x	Set	X			

Key:	floa	ıt and	l do	uble (r	not liste	ed) alw	ays	equal 3	2 and 64	, respe	ectively	/				
		nter (settir			equals	5 64 for	64-	bit dev	ices; othe	rwise,	match	ies				
	Rou	nds t	o =	Signe	d integ	er divis	ion	rounds	to							
	Shif	Shift right = Shift right on a signed integer as arithmetic shift														
Device vendor / Device type	Nur	nber	of b	oits				gest mic	Byte ordering	Round I to	l\$ hift right	Enable long long				
	cha	r shor	tint	long	long	native	int	float								
68HC08	8	16	16	32	64	8	x	x	Big Endian	x	Set	х				
68HC11	8	16	16	32	64	8	x	х	Big Endian	х	Set	х				
ColdFire	8	16	32	32	64	32	х	х	Big Endian	Zero	Set	х				
DSP563xx (16-bit mode)	8	16	16	32	64	16	x	х	X	х	Set	X				
HC(S)12	8	16	16	32	64	16	х	x	Big Endian	x	Set	x				
MPC52xx, MPC5500, MPC55xx, MPC5xx, MPC7xxx, MPC82xx, MPC82xx, MPC83xx, MPC86xx, MPC8xx	8	16	32	32	64	32	Lon	gDouble	x	Zero	Set	x				
MPC7400	8	16	32	32	64	32	Lon	gDouble	x	Zero	Set	Clear				
MPC85xx	8	16	32	32	64	32	Lon	gFloat	X	Zero	\mathbf{Set}	x				

Кеу:	floa	ıt and	l do	uble (r	not liste	ed) alw	ays	equal 3	32 and 64	, respe	ectively	/			
		nter (settir			equals	5 64 for	· 64·	bit dev	vices; othe	erwise,	match	es			
	Rou	nds t	o =	Signe	d integ	er divis	ion	rounds	to						
	Shif	Shift right = Shift right on a signed integer as arithmetic shift													
Device vendor / Device type	Nur	Number of bits						gest mic	Byte ordering		ls hift right	Enable long long			
	cha	r shor	tint	long	long	native	e int	float							
\$12x	8	16	16	32	64	16	х	x	Big Endian	х	Set	X			
Infineon															
C16x, XC16x	8	16	16	32	64	16	x	x	Little Endian	Zero	Set	х			
TriCore	8	16	32	32	64	32	x	x	Little Endian	х	Set	х			
Intel		•			•			•							
8051 Compatible	8	16	16	32	64	8	X	x	x	X	Clear	x			
x86/64	8	16	32	64	64	64	x	x	Little Endian	x	Set	X			
x86/Pentium	8	16	32	32	64	32	x	х	Little Endian	х	Set	X			
Microchip															
PIC18	8	16	16	32	64	8	x	x	Little Endian	Zero	Set	X			
dsPIC	8	16	16	32	64	16	X	х	Little Endian	Zero	Set	Х			

Key:	floa	ıt and	do	uble (r	not liste	ed) alw	ays	equal 3	82 and 64	, respe	ectively	1				
		pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int Rounds to = Signed integer division rounds to														
	Rou															
	Shift right = Shift right on a signed integer as arithmetic shift															
Device vendor / Device type	Nur	Number of bits						gest mic	Byte ordering	Round I to	l\$ hift right	Enable long long				
	cha	r shor	tint	long	long	native	int	float								
Renesas																
M16C	8	16	16	32	64	16	x	x	Little Endian	х	x	x				
M32C	8	16	x	32	64	x	х	x	Little Endian	х	x	x				
R8C/Tiny	8	16	16	32	64	16	х	x	Little Endian	х	x	x				
SH-2/3/4	8	16	32	32	64	32	x	х	x	х	х	x				
V850	8	16	32	32	64	32	x	x	х	х	х	x				
SGI																
UltraSPARC IIi	8	16	32	32	64	32	х	x	Big Endian	X	Set	х				
STMicroelect	troni	CS														
ST10/Super10	8	16	16	32	64	16	х	x	Little Endian	Zero	Set	х				
Texas Instru	ument	s														
C2000	16	16	16	32	64	16	Int	None	X	Zero	Set	х				
C5000	16	16	16	32	64	16	Int	None	Big Endian	Zero	Set	х				
C6000	8	16	32	40	64	32	Int	None	х	Zero	Set	x				

Key:	floa	float and double (not listed) always equal 32 and 64, respectively										
		pointer (not listed) equals 64 for 64-bit devices; otherwise, matches the setting for int										
	Rou	Rounds to = Signed integer division rounds to										
	Shif	hift right = Shift right on a signed integer as arithmetic shift										
Device vendor / Device type	Nur	nber	of b	oits			Largest Byte atomic orderin size		Byte ordering	Round s hift to right		Enable long long
	cha	r shor	tint	long	long	native	int	float				
MSP430	8	16	16	32	64	16	х	x	Little Endian	Zero	Set	х
TMS470	8	16	32	32	64	х	x	х	x	х	х	x

- If your test hardware does not match any of the listed types, select Unspecified (assume 32-bit Generic) if it has the characteristics of a generic 32-bit microprocessor; otherwise select Custom.
- The **Device vendor** and **Device type** fields both share the same command line parameter: TargetHWDeviceType. When specifying this parameter from the command line, separate the device vendor and device type values using the characters ->. For example: 'Intel->8051 Compatible'.
- To add **Device vendor** and **Device type** values to the default set that is displayed on the **Hardware Implementation** pane, see "Register Additional Device Vendor and Device Type Values" in the Simulink Coder documentation.

Dependencies

The options available in the drop-down menu are determined by the **Device vendor** parameter.

Selecting a device type sets the following device-specific parameters:

- Number of bits: char
- Number of bits: short

- Number of bits: int
- Number of bits: long
- Number of bits: long long
- Number of bits: float
- Number of bits: double
- Number of bits: native
- Number of bits: pointer
- Largest atomic size: integer
- Largest atomic size: floating-point
- Byte ordering
- Signed integer division rounds to
- Shift right on a signed integer as arithmetic shift
- Enable long long

Whether you can modify a device-specific parameter varies according to device type. Parameters that cannot be modified for a device are greyed out in the GUI display.

Command-Line Information

Parameter: TargetHWDeviceType Type: string Value: any valid value (see tips) Default: 'Generic->Unspecified (assume 32-bit Generic)'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- Device vendor (test hardware)
- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: char

Describe the character bit length for the hardware used to test code.

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: TargetBitPerChar Type: integer Value: any valid value Default: 8

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting	
Efficiency	Target specific	
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.	

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: short

Describe the data bit length for the hardware used to test code.

Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: TargetBitPerShort Type: integer Value: any valid value Default: 16

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: int

Describe the data integer bit length of the hardware used to test code.

Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: TargetBitPerInt Type: integer Value: any valid value Default: 32

Recommended Settings

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: long

Describe the data bit lengths for the hardware used to test code.

Settings

Default: 32

Minimum: 32

Maximum: 64

Enter a value between 32 and 64. (The value 64 is selected by default if you run MATLAB software on a 64-bit host computer and select the MATLAB host as the test hardware — that is, TargetHWDeviceType equals 'Generic->MATLAB Host Computer'.)

Tip

All values must be a multiple of 8 and between 32 and 64.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: TargetBitPerLong Type: integer Value: any valid value Default: 32

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

See Also

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: long long

Describe the length in bits of the C long long data type that the test hardware supports.

Settings

Default: 64

The number of bits used to represent the C long long data type.

Tips

- Use the long long data type only if your C compiler supports long long.
- You can change the value for custom targets only. For custom targets, all values must be a multiple of 8 and between 64 and 128.

Dependencies

- Enable long long enables use of this parameter.
- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- The value of this parameter must be greater than or equal to the value of **Number of bits: long**.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: TargetBitPerLongLong Type: integer Value: any valid value Default: 64

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- "Enable long long" on page 1-490
- Specifying Test Hardware Characteristics
- Hardware Implementation Options

- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: float

Describe the bit length of floating-point data for the hardware used to test code (read-only).

Settings

Default: 32

Always equals 32.

Command-Line Information

Parameter: TargetBitPerFloat Type: integer Value: 32 (read-only) Default: 32

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: double

Describe the bit-length of double data for the hardware used to test code (read-only).

Settings

Default: 64

Always equals 64.

Command-Line Information

Parameter: TargetBitPerDouble Type: integer Value: 64 (read only) Default: 64

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: native

Describe the microprocessor native word size for the hardware used to test code.

Settings

Default: 32

Minimum: 8

Maximum: 64

Enter a value between 8 and 64. (The value 64 is selected by default if you run MATLAB software on a 64-bit host computer and select the MATLAB host as the test hardware — that is, TargetHWDeviceType equals 'Generic->MATLAB Host Computer'.)

Tip

All values must be a multiple of 8.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: TargetWordSize Type: integer Value: any valid value Default: 32

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Number of bits: pointer

Describe the bit-length of pointer data for the hardware used to test code (read-only).

Settings

Default: 64 for 64-bit devices; otherwise, matches the setting for "Number of bits: int" on page 1-467

Minimum: 8

Maximum: 32

Command-Line Information

Parameter: TargetBitPerPointer Type: integer Value: any valid value (read only) Default: 64 for 64-bit devices; otherwise, matches the setting for TargetBitPerInt

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box

• Hardware Implementation Pane

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored on the hardware used to test code.

Settings

Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and stored on the hardware used to test code.

Short

Specifies that **short** is the largest integer data type that can be atomically loaded and stored on the hardware used to test code.

Int

Specifies that int is the largest integer data type that can be atomically loaded and stored on the hardware used to test code.

Long

Specifies that long is the largest integer data type that can be atomically loaded and stored on the hardware used to test code.

LongLong

Specifies that long long is the largest integer data type that can be atomically loaded and stored on the hardware used to test code.

Tip

This parameter is used, where possible, to optimize away unnecessary double-buffering or unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

1

• You can set this parameter to LongLong only if the hardware used to test the code supports the C long long data type and you have selected **Enable** long long.

Command-Line Information

```
Parameter: TargetLargestAtomicInteger
Type: string
Value: 'Char' | 'Short' | 'Int' | 'Long' | 'LongLong'
Default: 'Char'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane
- "Enable long long" on page 1-490

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and stored on the hardware used to test code.

Settings

Default: None

Float

Specifies that float is the largest floating-point data type that can be atomically loaded and stored on the hardware used to test code.

Double

Specifies that double is the largest floating-point data type that can be atomically loaded and stored on the hardware used to test code.

None

Specifies that there is no applicable setting or not to use this parameter in generating multirate code.

Tip

This parameter is used, where possible, to optimize away unnecessary double-buffering or unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

```
Parameter: TargetLargestAtomicFloat
Type: string
Value: 'Float' | 'Double' | 'None'
Default: 'None'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Byte ordering

Describe the byte ordering for the hardware used to test code.

Settings

Default: Unspecified

Unspecified

Specifies that the code determines the endianness of the hardware. This is the least efficient choice.

Big Endian

The most significant byte comes first.

Little Endian

The least significant byte comes first.

Note For guidelines to observe when configuring **Production hardware** controls for code generation, see Hardware Implementation Options in the Simulink Coder documentation.

Dependencies

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

```
Parameter: TargetEndianess
Type: string
Value: 'Unspecified' | 'LittleEndian' | 'BigEndian'
Default: 'Unspecified'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Signed integer division rounds to

Describe how to produce a signed integer quotient for the hardware used to test code.

Settings

Default: Undefined

Undefined

Choose this option if neither Zero nor Floor describes the compiler's behavior, or if that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer to negative infinity.

Tips

- Use the **Integer rounding mode** parameter on your model's blocks to simulate the rounding behavior of the C compiler that you use to compile code generated from the model. This setting appears on the **Signal Attributes** pane of the parameter dialog boxes of blocks that can perform signed integer arithmetic, such as the Product block.
- For most blocks, the value of **Integer rounding mode** completely defines rounding behavior. For blocks that support fixed-point data and the **Simplest** rounding mode, the value of **Signed integer division rounds to** also affects rounding. For details, see "Rounding".
- See Hardware Implementation Options in the Simulink Coder documentation for information on how this option affects code generation.
- The following table illustrates the compiler behavior described by the options for this parameter.

N	D	ldeal N/D	Zero	Floor	Undefined
33	4	8.25	8	8	8
- 33	4	-8.25	- 8	- 9	-8 or -9
33	- 4	-8.25	- 8	- 9	-8 or -9
- 33	- 4	8.25	8	8	8 or 9

Dependency

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: TargetIntDivRoundTo
Type: string
Value: 'Floor' | 'Zero' | 'Undefined'
Default: 'Undefined'

Recommended settings

Application	Setting
Debugging	No impact for simulation and during development. Undefined for production code generation.
Traceability	No impact for simulation and during development. Zero or Floor for production code generation.

Application	Setting
Efficiency	No impact for simulation and during development. Zero for production code generation.
Safety precaution	No impact for simulation and during development. Floor for production code generation.

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Shift right on a signed integer as arithmetic shift

Describe how your compiler rounds the result of two signed integers for the hardware used to test code.

Settings

Default: On

🔽 On

Generates simple efficient code whenever the Simulink model performs arithmetic shifts on signed integers.

C Off

Generates fully portable but less efficient code to implement right arithmetic shifts.

Tips

- Select this parameter if your C compiler implements a signed integer right shift as an arithmetic right shift.
- An arithmetic right shift fills bits vacated by the right shift with the value of the most significant bit, which indicates the sign of the number in twos complement notation. It is equivalent to dividing the number by 2.
- This setting affects only code generation

Dependency

- Selecting a device using the **Device vendor** and **Device type** parameters sets a device-specific value for this parameter.
- This parameter is enabled only if it can be modified for the currently selected device.

Command-Line Information

Parameter: TargetShiftRightIntArith
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	On
Safety precaution	No impact

- Specifying Test Hardware Characteristics
- Hardware Implementation Options
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Enable long long

Specify that your C compiler supports the C long long data type. Most C99 compilers support long long.

Settings

Default: Off

🔽 On

Enables use of C long long data type on the test hardware.

```
C Off
```

Disables use of C long long data type on the test hardware.

Tips

- This parameter is enabled only if the selected test hardware supports the C long long data type.
- If your compiler does not support C long long, do not select this parameter.

Dependencies

This parameter enables Number of bits: long long.

Command-Line Information

Parameter: TargetLongLongMode Type: string Value: 'on' | 'off' Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	Target specific
Safety precaution	No impact for simulation and during development. Match operation of compiler and hardware for code generation.

- "Number of bits: long long" on page 1-470
- Hardware Implementation Options
- Specifying Production Hardware Characteristics
- Configuration Parameters Dialog Box
- Hardware Implementation Pane

Model Referencing Pane

Select:	Build options for all referenced models	
Solver Data Import/Export Diptimization Diagnostics Hardware Implementation Model Referencing	Rebuild: If any changes detected Parallel Enable parallel model reference builds MATLAB worker initialization for builds: None 	
 Simulation Target Code Generation 	Options for referencing this model Total number of instances allowed per top model: Multiple	
	Propagate sizes of variable-size signals: Infer from blocks in model Image: Minimize algebraic loop occurrences Propagate all signal labels out of the model	
	Pass fixed-size scalar root inputs by value for code generation Model dependencies:	

In this section...

"Model Referencing Pane Overview" on page 1-494

"Rebuild" on page 1-495

"Never rebuild diagnostic" on page 1-505

"Enable parallel model reference builds" on page 1-507

"MATLAB worker initialization for builds" on page 1-509

"Total number of instances allowed per top model" on page 1-511

"Pass fixed-size scalar root inputs by value for code generation" on page 1-513

In this section...

"Minimize algebraic loop occurrences" on page 1-516

"Propagate all signal labels out of the model" on page 1-519

"Propagate sizes of variable-size signals" on page $1\mathchar`-522$

"Model dependencies" on page 1-525

Т

Model Referencing Pane Overview

Specify the options for including other models in this model, this model in other models, and for building simulation and code generation targets.

Configuration

Set the parameters displayed.

Tips

- To open the Model Referencing pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Model Referencing.
- The Model Referencing pane allows you to specify options for:
 - Including other models in this model.
 - Including the current model in other models.
- The option descriptions use the term *this model* to refer to the model that you are configuring and the term *referenced model* to designate models referenced by *this model*.

- Model Dependencies
- Configuration Parameters Dialog Box
- Model Referencing Pane

Rebuild

Select the method used to determine when to rebuild simulation and Simulink Coder targets for referenced models before updating, simulating, or generating code from this model.

There are four rebuild options. Two options, Always and Never, either always rebuild the model reference target or never rebuild the target, respectively. The other two options (If any changes detected and If any changes in known dependencies detected) cause Simulink to check the model and its dependencies to determine whether or not to rebuild the model reference target. As part of this checking, Simulink:

- Automatically identifies a set of "known" target dependencies that it examines for changes.
- May compute the model's structural checksum, which reflects changes to the model that can affect simulation results.

For additional background information to help you determine which rebuild option setting to use, see the "Definitions" and "Tips" sections.

Settings

Default: If any changes detected

Always

Always rebuild targets referenced by this model before simulating, updating, or generating code from this model.

If any changes detected

Rebuild a target for a referenced model if Simulink detects a change that could affect simulation results. To do this, Simulink first looks for changes to the known target dependencies and to the model, and, if none are found, it then computes the structural checksum of the model to check that the model reference target is up to date.

If any changes in known dependencies detected

Rebuild a target if Simulink detects a change in known target dependencies or in both the model and its structural checksum. If Simulink does not detect a change in known target dependencies or the model, it does *not* compute the structural checksum of the model

and does *not* rebuild the model reference target. You must list all user-created dependencies in the **Model dependencies** parameter.

Never

Never rebuild targets referenced by this model before simulating, updating, or generating code from this model.

Definitions

Known target dependencies

Known target dependencies are files and data outside of model files that Simulink examines for changes when checking to see if a model reference target is up to date. Simulink automatically computes a set of known target dependencies. Simulink examines the known target dependencies to determine whether they have changed, which it can do quickly. Examples of known target dependencies are:

- Changes to the model workspace, if its data source is a MAT-file or MATLAB file
- Enumerated type definitions
- User-written S-functions and their TLC files
- Files specified in the Model dependencies parameter
- MATLAB files used by MATLAB Function blocks
- MATLAB files used by MATLAB System blocks

User-created dependencies

Although Simulink automatically examines every known target dependency, you can have files that can impact the simulation results of your model that Simulink does not automatically identify. Some examples of user-created dependencies are:

- MATLAB files that contain code executed by callbacks
- MAT-files that contain definitions for variables used by the model that are loaded as part of a customized initialization script

You can add user-created dependencies to the set of known target dependencies by using the **Model dependencies** parameter.

Structural checksum

As part of determining whether a model reference target is up to date, Simulink may compute the structural checksum of a model, which reflects changes to the model that can affect simulation results.

When Simulink computes the structural checksum, it loads and compiles the model. To compile the model, Simulink must execute callbacks and access all variables that the model uses. As a result, the structural checksum reflects changes to the model that can affect simulation results, including changes in user-created dependencies, regardless of whether you have specified those user-created dependencies in the **Model dependencies** parameter.

For more information about the kinds of changes that affect the structural checksum, see the Simulink.BlockDiagram.getChecksum documentation.

Tips

- You do not need to have the same rebuild option setting for every model in a model reference hierarchy. When you simulate, update, or generate code for a model, the rebuild option setting for that model applies to all models that it references.
- To improve rebuild detection speed and accuracy, use the **Model dependencies** parameter to specify user-created dependencies. If you use the If any changes in known dependencies detected rebuild option, then specify all user-created dependencies for your model in the **Model dependencies** parameter.
- Each rebuild option setting has benefits and limitations, depending on your rebuild goal. The following table lists the options in the order of the thoroughness of rebuild detection. For detailed information about how Simulink determines whether a model reference target is out of date, see the Change Detection Processing on page 1-501 table, which is part of the next tip.

Rebuild Goal	Rebuild Option Setting	Notes
Make all the model reference targets up to date.	Always	Requires the most processing time.
		Can trigger unnecessary builds before simulating, updating, or generating code from a referenced model.
		Before you deploy a model, use the Always setting.
Perform extensive	If any changes detected	Default.
detection of changes to dependencies of the referenced models.		Reduces the number of rebuilds, compared to the Always setting.
		Detects changes in the dependencies of the target, as well as changes in the structural checksum of the referenced model.
		The structural checksum can detect changes that occur in user-created dependencies that are not specified with the Model dependencies parameter.

Benefits and Limitations of Each Option

Rebuild Goal	Rebuild Option Setting	Notes
Reduce time required for rebuild detection.	If any changes in known dependencies detected	Reduces the number of rebuilds, compared to the If any changes detected option. Ignores cosmetic changes, such as annotation changes, in the referenced model and its libraries.
		Subset of the checks performed by the If any changes detected option.
		Invalid simulation results may occur if you do not specify with the Model dependencies parameter every user-created dependency.
Avoid rebuilds during model development.	Never	Least amount of processing time, but requires that you ensure that the model reference targets are up to date.
		If you are certain that the model reference targets are up to date, you can use this option to avoid target dependency

Benefits and Limitations of Each Option (Continued)

Rebuild Goal	Rebuild Option Setting	Notes
		checking when simulating, updating, or generating code from a model.
		May lead to invalid results if referenced model targets are not in fact up to date.
		To have Simulink check for changes in known target dependencies and report if the model reference targets may be out of date, use the Never rebuild diagnostic parameter.
		To manually rebuild model reference targets, use the slbuild function.

Benefits and Limitations of Each Option (Continued)

• To detect whether to perform a rebuild, Simulink uses different processing for each **Rebuild** setting. The following table summarizes the main types of change detection checks that Simulink performs.

Rebuild Option Setting	Simulink Change Detection Processing
Always	Does no change detection processing.
	Always rebuilds targets referenced by this model before simulating, updating, or generating code from this model.
If any changes detected and If any changes in known dependencies	For both If any changes detected and If any changes in known dependencies detected, starts by checking for changes in known target dependencies. If finds changes, then triggers a rebuild.
known dependencies detected	If does not find changes, looks for changes in the model files and its libraries.
	• For the If any changes detected option:
	 If finds any model file changes, then triggers a rebuild.
	 If does not find changes, then loads the model, computes its structural checksum, and triggers a rebuild if the checksum has changed.
	 For the If any changes in known dependencies detected option:
	• If finds any model file changes, then computes the structural checksum of the model; triggers a rebuild only if the checksum has changed.
	• If does not find changes, checks whether the targets of any referenced model of this model have changed.
	• If finds any target changes, then computes the structural checksum of

Rebuild Option Setting	Simulink Change Detection Processing
	the model; triggers a rebuild only if the checksum has changed.
	 If does not find changes, then does not perform a final structural checksum calculation. Avoiding that calculation results in faster rebuild checking, by relying on the list of files specified in the Model dependencies parameter to identify user-created dependencies that can affect the output of this model.
	If you are unsure whether the list of files specified in the Model dependencies parameter is complete, use the If any changes detected rebuild option.
Never	Change detection processing determined by the Never rebuild diagnostic parameter.

Change Detection Processing (Continued)

• The following examples illustrate differences between the If any changes detected and If any changes in known dependencies detected options.

If you change a MATLAB file that is executed as part of a callback script (or other user-created dependency) that you have not listed in the **Model dependencies** parameter:

- If any changes detected Causes a rebuild, because the change to the file changes the structural checksum of the model.
- If any changes in known dependencies detected Does not cause a rebuild, because no known target dependency has changed.

If you move a block in a model:

• If any changes detected - Causes a rebuild, because the model has changed.

 If any changes in known dependencies detected – Does not cause a rebuild, because this change does not change the model's structural checksum.

Dependency

Selecting Never enables the Never rebuild diagnostic parameter.

Command-Line Information

Parameter: UpdateModelReferenceTargets
Type: string
Value: 'Force' | 'IfOutOfDateOrStructuralChange' | 'IfOutOfDate'
| 'AssumeUpToDate'
Default: 'IfOutOfDateOrStructuralChange'

UpdateModelReferenceTarge Value	Bquivalent Rebuild Value
'Force'	Always
'IfOutOfDateOrStructural	Hiafngæny changes detected
'IfOutOfDate'	If any changes in known dependencies detected
'AssumeUpToDate'	Never

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	If any changes detected or Never
	If you use the Never setting, then set the Never rebuild diagnostic parameter to Error if rebuild required.

- Model Dependencies
- Configuration Parameters Dialog Box
- Model Referencing Pane
- Simulink.BlockDiagram.getChecksum

Never rebuild diagnostic

Select the diagnostic action that Simulink software should take if it detects a model reference target that needs to be rebuilt.

Settings

Default: Error if rebuild required

none

Simulink takes no action.

Warn if rebuild required Simulink displays a warning.

Error if rebuild required

Simulink terminates the simulation and displays an error message.

Tip

If you set the **Rebuild** parameter to Never and set the **Never rebuild diagnostic** parameter to Error if rebuild required or Warn if rebuild required, then Simulink:

- Performs the same change detection processing as for the If any changes in known dependencies detected rebuild option setting, except it does not compare structural checksums
- Issues an error or warning (depending on the **Never rebuild diagnostic** setting), if it detects a change
- Never rebuilds the model reference target

Selecting None bypasses dependency checking, and thus enables faster updating, simulation, and code generation. However, the None setting can cause models that are not up to date to malfunction or generate incorrect results. For more information on the dependency checking, see "Rebuild" on page 1-495.

Dependency

This parameter is enabled only if you select Never in the Rebuild field.

Command-Line Information

```
Parameter: CheckModelReferenceTargetMessage
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Error if rebuild required

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Model Referencing Pane

Enable parallel model reference builds

Specify whether to use automatic parallel building of the model reference hierarchy whenever possible.

Settings

Default: Off

🔽 On

Simulink software builds the model reference hierarchy in parallel whenever possible (based on computing resources and the structure of the model reference hierarchy).

C Off

Simulink never builds the model reference hierarchy in parallel.

Dependency

Selecting this option enables the MATLAB worker initialization for builds parameter.

Command-Line Information

Parameter: EnableParallelModelReferenceBuilds
Type: string
Value: 'on' | 'off'
Default: 'off'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Reduce Update Time for Referenced Models"
- "Reduce Build Time for Referenced Models" in the Simulink Coder documentation
- Configuration Parameters Dialog Box
- Model Referencing Pane

MATLAB worker initialization for builds

Specify how to initialize MATLAB workers for parallel builds.

Settings

Default: None

None

Simulink software takes no action. Specify this value if the child models in the model reference hierarchy do not rely on anything in the base workspace beyond what they explicitly set up (for example, with a model load function).

Copy base workspace

Simulink attempts to copy the base workspace to each MATLAB worker. Specify this value if you use a setup script to prepare the base workspace for all models to use.

Load top model

Simulink loads the top model on each MATLAB worker. Specify this value if the top model in the model reference hierarchy handles all of the base workspace setup (for example, with a model load function).

Limitation

For values other than None, limitations apply to global variables in the base workspace. Global variables are not propagated across parallel workers and do not reflect changes made by top and child model scripts.

Dependency

Selecting the option **Enable parallel model reference builds** enables this parameter.

Command-Line Information

Parameter: ParallelModelReferenceMATLABWorkerInit
Type: string
Value: 'None' | 'Copy Base Workspace' | 'Load Top Model'
Default: 'None'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Reduce Update Time for Referenced Models"
- "Reduce Build Time for Referenced Models" in the Simulink Coder documentation
- Configuration Parameters Dialog Box
- Model Referencing Pane

Total number of instances allowed per top model

Specify how many references to this model can occur in another model.

Settings

Default: Multiple

Zero

The model cannot be referenced. An error occurs if a reference to the model occurs in another model.

0ne

The model can be referenced at most once in a model reference hierarchy. An error occurs if more than one reference exists.

Multiple

The model can be referenced more than once in a hierarchy, provided that it contains no constructs that preclude multiple reference. An error occurs if the model cannot be multiply referenced, even if only one reference exists.

To use multiple instances of a referenced model in Normal mode, use the Multiple setting. For details, see "Using Normal Mode for Multiple Instances of Referenced Models".

Command-Line Information

```
Parameter: ModelReferenceNumInstancesAllowed
Type: string
Value: 'Zero' | 'Single' | 'Multi'
Default: 'Multi'
```

Application	Setting	
Debugging	No impact	
Traceability	No impact	

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Model Referencing Pane

Pass fixed-size scalar root inputs by value for code generation

Specify whether a model that calls (references) this model passes its scalar inputs to this model by value.

Settings

Default: Off (GUI), 'on' (command-line)

🔽 On

A model that calls (references) this model passes scalar inputs to this model by value.

🗖 Off

The calling model passes the inputs by reference (it passes the addresses of the inputs rather than the input values).

Tips

- This option is ignored in either of these two cases:
 - The C function prototype control is not the default.
 - The C++ encapsulation interface is not the default.
- Passing root inputs by value allows this model to read its scalar inputs from register or local memory, which is faster than reading the inputs from their original locations.
- Enabling this parameter can result in the simulation behavior differing from the generated code behavior under certain modeling semantics. If you use the default setting of Enable all as errors for the Configuration Parameters > Diagnostics > Connectivity > Context-dependent inputs parameter, then Simulink reports cases where the modeling semantics may result in inconsistent behaviors for simulation and for generated code. If the diagnostic identifies an issue, latch the function-call subsystem inputs. For more information about latching function-call subsystems, see "Context-dependent inputs" on page 1-351.
- If the Context-dependent inputs diagnostic reports no issues for a model, consider enabling the **Pass fixed-size scalar root inputs by value for**

code generation parameter, which usually generates more efficient code for such a model.

- If you have a Simulink Coder license, selecting this option can affect reuse of code generated for subsystems. See Reusable Code and Referenced Models for more information.
- For SIM targets, a model that references this model passes inputs by reference, regardless of how you set the **Pass fixed-size scalar root inputs by value for code generation** parameter.

Command-Line Information

Parameter:ModelReferencePassRootInputsByReference
Type: string
Value: 'on' | 'off'
Default: 'on'

Note The command-line values are reverse of the settings values. Therefore, 'on' in the command line corresponds to the description of "Off" in the settings section, and 'off' in the command line corresponds to the description of "On" in the settings section.

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Off

- "Create a Function-Call Subsystem"
- Reusable Code and Referenced Models

- Configuration Parameters Dialog Box
- Model Referencing Pane

Minimize algebraic loop occurrences

Try to eliminate artificial algebraic loops from a model that involve the current referenced model

Settings

Default: Off

🗹 On

Simulink software tries to eliminate artificial algebraic loops from a model that involve the current referenced model.

C Off

Simulink software does not try to eliminate artificial algebraic loops from a model that involve the current referenced model.

Tips

Enabling this parameter together with the Simulink Coder **Single output/update function** parameter results in an error.

Command-Line Information

Parameter:ModelReferenceMinAlgLoopOccurrences Type: string Value: 'on' | 'off' Default: 'off'

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Off

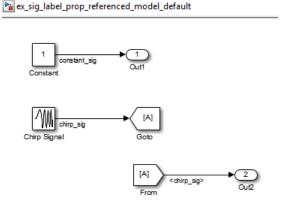
- Model block
- "How Simulink Eliminates Artificial Algebraic Loops"
- Model Blocks and Direct Feedthrough
- Diagnosing Simulation Errors
- Configuration Parameters Dialog Box
- Model Referencing Pane

Propagate all signal labels out of the model

Pass propagated signal names to output signals of Model block.

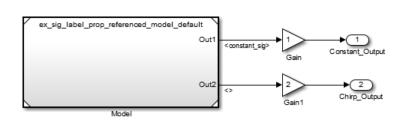
Settings

Default: Off


Simulink propagates signal names to output signals of the Model block.

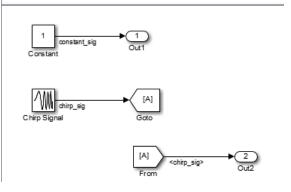
C Off

Simulink does not propagate signal names to output signals of the Model block.


Tips

- Enable this parameter for each instance of a referenced model for which you want to propagate signal labels.
- The following models illustrate the default behavior, when signal label propagation is enabled for every eligible signal. Inside the referenced model, signal label propagation occurs as in any model. However, the output signal from the Model block Out2 port displays empty brackets for the propagated signal label.




1

• The following models illustrate the behavior when you enable the **Propagate all signal labels out of the model** parameter for the referenced model. The output signal from the Model block Out2 port displays the propagated signal name (Chirp_sig), whose source is inside the referenced model.

Command-Line Information

Parameter: PropagateSignalLabelsOutOfModel
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	Off

- Model block
- "Signal Label Propagation"

Т

Propagate sizes of variable-size signals

Select how variable-size signals propagate through referenced models.

Settings

Default: Infer from blocks in model

Infer from blocks in model

Searches a referenced model and groups blocks into the following categories.

Category	Description	Example Blocks in This Category
1	Output signal size depends on input signal values.	Switch or Enable Subsystem block whose parameter Propagate sizes of variable-size signals is set to During execution
2	States require resetting when the input signal size changes.	Unit Delay block in an Enabled Subsystem whose parameter Propagate sizes of variable-size signals is set to Only when enabling
3	Output signal size depends only on the input signal size.	Gain block.

The search stops at the boundary of Enable, Function-Call, and Action subsystems because these subsystems can specify when to propagate the size of a variable-size signal.

Simulink sets the propagation of variable-size signals for a referenced model as follows:

- One or more blocks in category 1, and all other blocks are in category 3, select During execution.
- One or more blocks in category 2, and all another blocks are in category 3, select Only when enabling.

- Blocks in category 1 and 2, report an error.
- All blocks in category 3 with a conditionally executed subsystem that is not an Enable, Function-Call, or Action subsystem, report an error. Simulink, in this case, cannot determine when to propagate sizes of variable-size signals.
- All blocks in category 3 with only conditionally executed subsystems that are an Enable, Function-Call, or Action subsystem, support both Only with enabling and During execution.
- Only when enabling

Propagates sizes of variable-size signals for the referenced model only when enabling (at Enable method).

During execution

Propagates sizes of variable-size signals for the referenced model during execution (at Outputs method).

Command-Line Information

Parameter: PropagateVarSize
Type: string
Value: 'Infer from blocks in model' | 'Only when enabling'|
'During execution'
Default: 'Infer from blocks in model'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

See Also

• Configuration Parameters Dialog Box

• Model Referencing Pane

Model dependencies

Although Simulink automatically examines every known target dependency, you can have files that can impact the simulation results of your model that Simulink does not automatically identify. Some examples of user-created dependencies are:

- MATLAB files that contain code executed by callbacks
- MAT-files that contain definitions for variables used by the model that are loaded as part of a customized initialization script

You can add user-created dependencies to the set of known target dependencies by using the **Model dependencies** parameter.

Simulink examines the files specified with the **Model dependencies** parameter when determining whether the model reference target is up to date. If the **Rebuild** parameter is set to:

- Always, then the listed files are not examined.
- Either If any changes detected or If any changes in known dependencies detected, then changes to listed files cause the model reference target to rebuild.
- Never, and the Never rebuild diagnostic parameter is set to either Warn if rebuild required or Error if rebuild required, then changes to listed files cause Simulink to report a warning or error.

Settings

Default: ''

- Specify the dependencies as a cell array of strings, where each cell array entry is one of the following:
 - File name Simulink looks on the MATLAB path for a file with the given name. If the file is not on the MATLAB path, then specify the path to the dependent file, as described below.
 - Path to the dependent file The path can be relative or absolute, and must include the file name.

- Folder Simulink treats every file in that folder as a dependent file.
 Simulink does not include files of subfolders of the folder you specify.
- File names must include a file extensions (for example, .m or .mat)
- File names and paths can include spaces.
- You can use the following characters in the strings:
 - The token \$MDL, as a prefix to a dependency to indicate that the path to the dependency is relative to the location of this model file
 - An asterisk (*), as a wild card
 - A percent sign (%), to comment out a line
 - An ellipsis (...), to continue a line

For example:

```
{'D:\Work\parameters.mat', '$MDL\mdlvars.mat', ...
'D:\Work\masks\*.m'}
```

Tips

- To improve rebuild detection speed and accuracy, use the **Model dependencies** parameter to specify model dependencies other than those that Simulink checks automatically as part of the its rebuild detection. For details, see the **Rebuild** parameter documentation.
- If the **Rebuild** setting is If any changes in known dependencies detected, to prevent invalid simulation results, add every user-created dependency (for example, MATLAB code files or MAT-files).
- Using the Simulink Manifest Tools can help you to identify model dependencies. For more information, see "Analyze Model Dependencies".
- If Simulink cannot find a specified dependent file when you update or simulate a model that references this model, Simulink displays a warning.
- The dependencies automatically include the model and linked library files, so you do not need to specify those files with the **Model dependencies** parameter.

Command-Line Information

Parameter: ModelDependencies Type: string Value: any valid value Default: ''

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- "Rebuild" on page 1-495
- Configuration Parameters Dialog Box
- Model Referencing Pane

Simulation Target Pane: General

In this section...

"Simulation Target: General Tab Overview" on page 1-529
"Enable debugging/animation" on page 1-530
"Enable overflow detection (with debugging)" on page 1-532
"Ensure responsiveness" on page 1-534
"Echo expressions without semicolons" on page 1-536
"Ensure memory integrity" on page 1-538
"Simulation target build mode" on page 1-540

Simulation Target: General Tab Overview

Configure the simulation target for a model that contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

🔞 Configuration Parameters: vdp/	Configuration (Active)		
Select: Solver Data Import/Export Diagnostics Hardware Implementation Model Referencing Simulation Target Code Generation	MATLAB and Stateflow Image: Matrix and Stateflow Image: Stateflow examples and stateflow Image: Stateflow examples and stateflow e		
0		OK Cancel Help Apply]

Configuration

Set the parameters that appear.

Tip

To open the Simulation Target pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Simulation Target.

- Speeding Up Simulation
- Configuration Parameters Dialog Box
- Simulation Target Pane: General

Enable debugging/animation

Enable debugging and animation during simulation of a model that contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Settings

Default: On

🔽 On

Enables debugging and animation of a model during simulation.

If you have a Stateflow license, this action also enables the Stateflow Debugger.

🗖 Off

Disables debugging and animation of a model during simulation.

If you have a Stateflow license, this action also disables the Stateflow Debugger.

Tip

• If you disable debugging and animation, faster model simulation occurs.

Command-Line Information

Parameter: SFSimEnableDebug Type: string Value: 'on' | 'off' Default: 'on'

Application	Setting
Debugging	On
Traceability	No impact

Application	Setting
Efficiency	Off
Safety precaution	On

- Speeding Up Simulation
- Configuration Parameters Dialog Box
- Simulation Target Pane: General

Т

Enable overflow detection (with debugging)

Enable overflow detection of data during simulation of a model that contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks. Overflow occurs for data when a value assigned to it exceeds the numeric capacity of the data type.

Settings

Default: On

🔽 On

Enables overflow detection of data during simulation.

If you have a Stateflow license, you must also select the **Data Range** check box in the Stateflow Debugger window.

🗖 Off

Disables overflow detection of data during simulation.

Tips

- If your model contains fixed-point data, enable overflow detection.
- If you disable overflow detection, faster model simulation occurs.

Command-Line Information

Parameter: SFSimOverflowDetection
Type: string
Value: 'on' | 'off'
Default: 'on'

Application	Setting
Debugging	On
Traceability	No impact

Application	Setting
Efficiency	Off
Safety precaution	On

- Speeding Up Simulation
- Overflow Detection for Fixed-Point Types
- Configuration Parameters Dialog Box
- Simulation Target Pane: General

Ensure responsiveness

Enables responsiveness checks in code generated for MATLAB Function blocks.

Settings

Default: On

🗹 On

Enables periodic checks for Ctrl+C breaks in code generated for MATLAB Function blocks. Also allows graphics refreshing.

C Off

Disables periodic checks for Ctrl+C breaks in code generated for MATLAB Function blocks. Also disables graphics refreshing.

Caution Without these checks, the only way to end a long-running execution might be to terminate the MATLAB session.

Command-Line Information

Parameter: SimCtrlC Type: string Value: 'on' | 'off' Default: 'on'

Application	Setting
Debugging	On
Traceability	On
Efficiency	Off
Safety precaution	On

- "Control Run-Time Checks" in the Simulink User's Guide
- Configuration Parameters Dialog Box
- Simulation Target Pane: General

Т

Echo expressions without semicolons

Enable run-time output in the MATLAB Command Window, such as actions that do not terminate with a semicolon. This behavior applies to a model that contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Settings

Default: On

🔽 On

Enables run-time output to appear in the MATLAB Command Window during simulation.

🗖 Off

Disables run-time output from appearing in the MATLAB Command Window during simulation.

Tip

• If you disable run-time output, faster model simulation occurs.

Command-Line Information

Parameter: SFSimEcho Type: string Value: 'on' | 'off' Default: 'on'

Application	Setting
Debugging	On
Traceability	No impact
Efficiency	Off
Safety precaution	No impact

- Speeding Up Simulation
- Configuration Parameters Dialog Box
- Simulation Target Pane: General

Т

Ensure memory integrity

Detects violations of memory integrity in code generated for MATLAB Function blocks and stops execution with a diagnostic.

Settings

Default: On

🗹 On

Detect violations of memory integrity in code generated for MATLAB Function blocks and stops execution with a diagnostic message.

C Off

Does not detect violations of memory integrity in code generated for MATLAB Function blocks.

Caution Without these checks, violations result in unpredictable behavior.

Tips

- The most likely cause of memory integrity issues is accessing an array out of bounds.
- Only disable these checks if you are sure that your code is safe and that all array bounds and dimension checking is unnecessary.

Command-Line Information

```
Parameter: SimIntegrity
Type: string
Value: 'on' | 'off'
Default: 'on'
```

Recommended Settings

Application	Setting
Debugging	On
Traceability	On
Efficiency	Off
Safety precaution	On

- "Control Run-Time Checks" in the Simulink User's Guide
- Configuration Parameters Dialog Box
- Simulation Target Pane: General

T

Simulation target build mode

Specifies how you build the simulation target for a model that contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Settings

Default: Incremental build

Incremental build

This option rebuilds only those portions of the target that you changed since the last build.

Rebuild all (including libraries)

This option rebuilds the target, including libraries, from scratch.

Make without generating code

This option invokes the make process without generating code.

Clean all (delete generated code/executables) This option deletes both generated source code and executable files.

Tips

- The default Incremental build is a good choice for most models. This action takes place whenever you simulate your model.
- Set Rebuild all (including libraries) if you have changed your compiler or updated your object files since the last simulation. For example, use this option to rebuild the simulation target to include custom code changes.
- Set Make without generating code when you have custom source files that you must recompile in an incremental build mechanism that does not detect changes in custom code files.

Clean objects (delete executables only) This option deletes only executable files.

Command-Line Information

```
Parameter: SimBuildMode
Type: string
Value: 'sf_incremental_build' | 'sf_nonincremental_build' |
'sf_make' | 'sf_make_clean' | 'sf_make_clean_objects'
Default: 'sf_incremental_build'
```

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Configuration Parameters Dialog Box
- Simulation Target Pane: General

Simulation Target Pane: Symbols

Reserved names:

In this section...

"Simulation Target: Symbols Tab Overview" on page 1-543

"Reserved names" on page $1\mathchar`-544$

Simulation Target: Symbols Tab Overview

Configuration

- **1** Enter reserved names for a model that contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.
- 2 Click Apply.

Tip

To open the Simulation Target: Symbols pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Simulation Target > Symbols.

- Configuration Parameters Dialog Box
- Simulation Target Pane: Symbols

Reserved names

Enter the names of variables or functions in the generated code that match the names of variables or functions specified in custom code for a model that contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Settings

Default: {}

This action changes the names of variables or functions in the generated code to avoid name conflicts with identifiers in custom code. Reserved names must be shorter than 256 characters.

Tips

- Start each reserved name with a letter or an underscore to prevent error messages.
- Each reserved name must contain only letters, numbers, or underscores.
- Separate the reserved names using commas or spaces.
- You can also specify reserved names by using the command line:

config_param_object.set_param('SimReservedNameArray', {'abc','xyz'})

where *config_param_object* is the object handle to the model settings in the Configuration Parameters dialog box.

Command-Line Information

Parameter: SimReservedNameArray Type: string array Value: any reserved names shorter than 256 characters Default: {}

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Configuration Parameters Dialog Box
- Simulation Target Pane: Symbols

Simulation Target Pane: Custom Code

▼ Parse custom code	2 symbols
-Include custom C co	de in generated:
Source file	Source file:
Header file	
Initialize function	
Terminate function	
-Include list of additio	inal:
Include directories	Include directories:
Source files	
Libraries	

In this section...

"Simulation Target: Custom Code Tab Overview" on page 1-548

"Parse custom code symbols" on page 1-549

"Source file" on page 1-551

In this section...

"Header file" on page 1-552

"Initialize function" on page 1-554

"Terminate function" on page 1-555

"Include directories" on page 1-556

"Source files" on page 1-558

"Libraries" on page 1-560

"Use local custom code settings (do not inherit from main model)" on page 1-562

Simulation Target: Custom Code Tab Overview

Include custom code settings for a model that contains MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

Configuration

- **1** Select the type of information to include from the list on the left side of the pane.
- **2** Enter a string to identify the specific code, folder, source file, or library.
- 3 Click Apply.

Tip

To open the Simulation Target: Custom Code pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Simulation Target > Custom Code.

- Including Custom C Code
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Parse custom code symbols

Specify whether or not to parse the custom code and report unresolved symbols in a model. This setting applies to all C charts in the model, including library link charts.

Settings

Default: On

🔽 On

Enables parsing of custom code to report unresolved symbols in C charts of your model.

🗖 Off

Disables parsing of custom code.

Tips

- When you create a new model, this check box is selected by default.
- When you load models saved as version R2010a or earlier, this check box is selected only if the MEX compiler is 1cc. Otherwise, the check box is not selected.
- This option only applies to C charts, not charts that use MATLAB as the action language.

Command-Line Information

Parameter: SimParseCustomCode Type: string Value: 'on' | 'off' Default: 'on'

Recommended Settings

Application	Setting
Debugging	On
Traceability	No impact
Efficiency	No impact
Safety precaution	On

- Including Custom C Code
- Resolving Symbols in Stateflow Charts
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Source file

Enter code lines to appear near the top of a generated source code file.

Settings

Default: ''

Code lines appear near the top of the generated $\verb"model.c"$ source file, outside of any function.

Command-Line Information

Parameter: SimCustomSourceCode Type: string Value: any C code Default: ''

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Including Custom C Code
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Header file

Enter code lines to appear near the top of a generated header file.

Settings

Default: ''

Code lines appear near the top of the generated *model*.h header file.

Tips

- When you include a custom header file, enclose the file name in double quotes. For example, #include "sample_header.h" is a valid declaration for a custom header file.
- You can include extern declarations of variables or functions.

Command-Line Information

Parameter: SimCustomHeaderCode Type: string Value: any C code Default: ''

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

See Also

• Including Custom C Code

- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Initialize function

Enter code statements that execute once at the start of simulation.

Settings

Default: ''

Code appears inside the model's initialize function in the model.c file.

Tip

• Use this code to invoke functions that allocate memory or to perform other initializations of your custom code.

Command-Line Information

Parameter: SimCustomInitializer Type: string Value: any C code Default: ''

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Including Custom C Code
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Terminate function

Enter code statements that execute at the end of simulation.

Settings

Default: ''

Code appears inside the model's terminate function in the *model*.c file.

Tip

• Use this code to invoke functions that free memory allocated by the custom code or to perform other cleanup tasks.

Command-Line Information

Parameter: SimCustomTerminator Type: string Value: any C code Default: ''

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Including Custom C Code
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Include directories

Specify a list of folder paths that contain files you include in the compiled target.

Settings

Default: ' '

Enter a space-separated list of folder paths.

- Specify absolute or relative paths to the directories.
- Relative paths must be relative to the folder containing your model files, not relative to the build folder.
- The order in which you specify the directories is the order in which they are searched for header, source, and library files.

Note If you specify a Windows[®] path string containing one or more spaces, you must enclose the string in double quotes. For example, the second and third path strings in the **Include directories** entry below must be double-quoted:

```
C:\Project "C:\Custom Files" "C:\Library Files"
```

If you set the equivalent command-line parameter SimUserIncludeDirs, each path string containing spaces must be separately double-quoted within the single-quoted third argument string, for example,

Command-Line Information

Parameter: SimUserIncludeDirs Type: string Value: any folder path Default: ''

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Including Custom C Code
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Source files

Specify a list of source files to compile and link into the target.

Settings

Default:''

You can separate source files with a comma, a space, or a new line.

Limitation

This parameter does not support Windows file names that contain embedded spaces.

Tip

• The file name is sufficient if the file is in the current MATLAB folder or in one of the include directories.

Command-Line Information

Parameter: SimUserSources Type: string Value: any file name Default: ''

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Including Custom C Code
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Libraries

Specify a list of static libraries that contain custom object code to link into the target.

Settings

Default:''

Enter a space-separated list of library files.

Limitation

This parameter does not support Windows file names that contain embedded spaces.

Tip

• The file name is sufficient if the file is in the current MATLAB folder or in one of the include directories.

Command-Line Information

Parameter: SimUserLibraries Type: string Value: any library file name Default: ''

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact
Efficiency	No impact
Safety precaution	No impact

- Including Custom C Code
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Т

Use local custom code settings (do not inherit from main model)

Specify if a library model can use custom code settings that are unique from the main model.

Settings

Default: Off

Enables a library model to use custom code settings that are unique from the main model.

🗖 Off

Disables a library model from using custom code settings that are unique from the main model.

Dependency

This parameter is available only for library models that contain MATLAB Function blocks, Stateflow charts, or Truth Table blocks. To access this parameter, in the MATLAB Function Block Editor, select **Tools > Open Simulation Target**.

Command-Line Information

Parameter: SimUseLocalCustomCode Type: string Value: 'on' | 'off' Default: 'off'

Recommended Settings

Application	Setting
Debugging	No impact
Traceability	No impact

Application	Setting
Efficiency	No impact
Safety precaution	No impact

- Including Custom C Code
- Configuration Parameters Dialog Box
- Simulation Target Pane: Custom Code

Run on Target Hardware Pane

🚱 Configuration Parameters: un	titled/Run on Hardware Configuration (Active)	×
Select: Solver	Target hardware selection	Â
Data Import/Export Optimization Jiagnostics Hardware Implementat Model Referencing Simulation Target Code Generation Mun on Target Hardware	Target hardware: LEGO MINDSTORMS NXT Host to target hardware connection Connection type: Bluetooth connection Device name: Signal monitoring and parameter tuning Image: Signal monitoring and parameter tuning Image: COM port: Manually COM port number: 1 Overrun detection Image:	ш
	Communication between two NXT bricks Image: Communication between two NXT bricks Bluetooth mode: Master Slave Bluetooth address: 00:16:53:0f:0c:09	
•	4	Ŧ
0	OK Cancel Help Apply	

In this section...

"Run on Target Hardware Pane Overview" on page 1-566

"Target hardware" on page 1-567

"Enable External mode" on page 1-571

"Connection type" on page 1-573

In this section	
"Device name" on page 1-574	
"TCP/IP port (1024-65535)" on page 1-575	
"Enable overrun detection" on page 1-576	
"Digital output to set on overrun" on page 1-577	
"Enable communication between two NXT bricks" on page 1-578	
"Bluetooth mode" on page 1-579	
"Slave Bluetooth address" on page 1-580	
"Host name" on page 1-581	
"User name" on page 1-582	
"Password" on page 1-583	
"Build directory" on page 1-584	
"Set host COM port" on page 1-584	
"COM port number" on page 1-585	
"Analog input reference voltage" on page 1-586	
"Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate" on page 1-587	
"IP address for the Arduino ethernet shield" on page 1-587	
"MAC address for the Arduino ethernet shield" on page 1-588	

Run on Target Hardware Pane Overview

Specify the options for creating and running applications on target hardware.

Configuration

- 1 Choose the **Target hardware** in the Run on Target Hardware pane.
- **2** Set the parameters displayed for the selected device type.
- **3** Apply the changes.

Tip

To open the Run on Target Hardware pane, in the Simulink Editor, select Simulation > Model Configuration Parameters > Run on Target Hardware.

Target hardware

Select the type of hardware upon which to run your model.

Changing this parameter updates the Configuration Parameters dialog so it only displays parameters that are relevant to your target hardware.

If your target hardware is supported, but not available in the **Target hardware** parameter options, use Support Package Installer to install support for your target hardware, as described in "What Is Support Package Installer?". After installing support for your target hardware, reopen the Configuration Parameters dialog and select your target hardware.

Settings

Default: None

None

This setting means your model has not been configured to run on target hardware. Choose your target hardware from the list of options.

Arduino Mega 2560

This setting displays the following configuration parameters for Arduino[®] Mega 2560 hardware:

- "Enable External mode" on page 1-571
- "Enable overrun detection" on page 1-576
- "Digital output to set on overrun" on page 1-577
- "Set host COM port" on page 1-584
- "COM port number" on page 1-585
- "Analog input reference voltage" on page 1-586
- "Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate" on page 1-587

Arduino Uno

This setting displays the following configuration parameters for Arduino Uno hardware:

• "Enable overrun detection" on page 1-576

- "Digital output to set on overrun" on page 1-577
- "Set host COM port" on page 1-584
- "COM port number" on page 1-585
- "Analog input reference voltage" on page 1-586

Arduino Nano

This setting displays the following configuration parameters for Arduino Nano hardware:

- "Enable overrun detection" on page 1-576
- "Digital output to set on overrun" on page 1-577
- "Set host COM port" on page 1-584
- "COM port number" on page 1-585
- "Analog input reference voltage" on page 1-586

BeagleBoard

This setting displays the following configuration parameters for BeagleBoard hardware:

- "Enable External mode" on page 1-571
- "TCP/IP port (1024-65535)" on page 1-575
- "Enable overrun detection" on page 1-576
- "Host name" on page 1-581
- "User name" on page 1-582
- "Password" on page 1-583
- "Build directory" on page 1-584

Gumstix Overo

This setting displays the following configuration parameters for $Gumstix^{\circledast}\ Overo^{\circledast}\ hardware:$

- "Enable External mode" on page 1-571
- "TCP/IP port (1024-65535)" on page 1-575
- "Enable overrun detection" on page 1-576
- "Host name" on page 1-581

- "User name" on page 1-582
- "Password" on page 1-583
- "Build directory" on page 1-584

LEGO MINDSTORMS NXT

This option display the following configuration parameters for $\rm LEGO^{\circledast}$ MINDSTORMS $^{\rm @}$ NXT hardware:

- "Enable External mode" on page 1-571
- "Connection type" on page 1-573
- "Enable overrun detection" on page 1-576
- "Enable communication between two NXT bricks" on page 1-578
- "Bluetooth mode" on page 1-579
- "Slave Bluetooth address" on page 1-580
- "Set host COM port" on page 1-584
- "COM port number" on page 1-585

PandaBoard

This setting displays the following configuration parameters for PandaBoard hardware:

- "Enable External mode" on page 1-571
- "TCP/IP port (1024-65535)" on page 1-575
- "Enable overrun detection" on page 1-576
- "Host name" on page 1-581
- "User name" on page 1-582
- "Password" on page 1-583
- "Build directory" on page 1-584

Raspberry Pi

This setting displays the following configuration parameters for Raspberry Pi^{TM} hardware:

- "Enable External mode" on page 1-571
- "TCP/IP port (1024-65535)" on page 1-575

- "Enable overrun detection" on page 1-576
- "Host name" on page 1-581
- "User name" on page 1-582
- "Password" on page 1-583
- "Build directory" on page 1-584

- "Install Support for Arduino Hardware"
- "Install Support for BeagleBoard Hardware"
- "Install Support for LEGO MINDSTORMS NXT Hardware"
- "Install Support for PandaBoard Hardware"

Enable External mode

Enable External mode to tune and monitor a model while it runs on your target hardware.

With External mode, changing a parameter value in the model on the host changes the corresponding value in the model running on the target hardware. Similarly, scopes in the model display data from the model running on target hardware.

Enabling External mode adds a lightweight server to the model running on the target hardware. This server increases the processing burden upon the target hardware, which can result in an overrun condition. If you enable the **Enable overrun detection** check box, and the software reports an overrun, consider disabling External mode.

Enabling the **External mode** parameter makes the following communication-related parameters visible:

- Set host COM port LEGO MINDSTORMS NXT hardware and Arduino Mega 2560 hardware
- TCP/IP port (1024-65535) for BeagleBoard and PandaBoard hardware

Enabling the **External mode** parameter disables the **Enable communication between two NXT bricks** parameter LEGO MINDSTORMS NXT hardware.

Settings

Default: Disabled

Disabled

The model application does not support External mode.

Enabled

The model application supports External mode.

See Also

• "Enable overrun detection" on page 1-576

- "Set host COM port" on page 1-584
- "TCP/IP port (1024-65535)" on page 1-575
- "Tune and Monitor Model Running on Arduino Mega 2560 Hardware"
- "Tune and Monitor Model Running on BeagleBoard Hardware"
- "Tune and Monitor Model Running on PandaBoard Hardware"
- "Tune Parameters and Monitor Data in a Model Running on NXT Brick"
- "Use Serial Communications with Arduino Hardware"

Connection type

Choose the connection Simulink uses to download your model from the host computer to the NXT hardware.

Set up a USB or Bluetooth $\ensuremath{^{ \ensuremath{\mathbb{R}}}}$ connection before running the model on the NXT hardware.

Note The NXT hardware always uses a Bluetooth connection for External mode communications. The **Connection type** parameter does not affect External mode communications.

Settings

Default: USB connection

USB connection

Use a USB connection to download a model to the NXT hardware.

Bluetooth connection

Use a Bluetooth connection to download a model to the NXT hardware.

- "Run Model on NXT Brick"
- "Set Up A Bluetooth Connection"

1

Device name

This parameter appears when the **Target hardware** parameter is set to LEGO MINDSTORMS NXT and the **Connection type** parameter is set to Bluetooth connection.

While you are setting up a Bluetooth connection, get the name of the NXT hardware in Windows **Devices and Printers** and assign it to the **Device name** parameter. For example, if the Windows device name is "myNXT", enter myNXT for **Device name** parameter in the Configuration Parameters dialog.

- "Run Model on NXT Brick"
- "Set Up A Bluetooth Connection"

TCP/IP port (1024-65535)

This parameter appears when the **Target hardware** parameter is set to **BeagleBoard** or **PandaBoard** and the **Enable External mode** check box is enabled.

Set the value of the TCP/IP port number, from 1024 to 65535, that External mode uses to communicate between the BeagleBoard hardware and the host computer.

Settings

Default: 17725

- "Enable External mode" on page 1-571
- "Tune and Monitor Model Running on BeagleBoard Hardware"
- "Tune and Monitor Model Running on PandaBoard Hardware"

Enable overrun detection

Detect when a task overruns occurs in a Simulink model running on the target hardware. Indicate when an overrun has occurred.

A task overrun occurs if the target hardware is still performing one instance of a task when the next instance of that task is scheduled to begin.

The "Detect and Fix Task Overruns" topics listed in the following "See Also" subtopic describe how your target hardware indicates that an overrun has occurred.

You can fix overruns by decreasing the frequency with which tasks are scheduled to run, and by reducing the number or complexity of the tasks defined by your model.

If those solutions do not fix the task overrun condition, and you are using External mode, consider disabling External mode by clearing the **Enable External mode** checkbox.

Settings

Default: Disabled

Disabled

Do not detect overruns.

Enabled

Detect overruns and generate an error message when an overrun occurs.

- "Digital output to set on overrun" on page 1-577
- "Enable External mode" on page 1-571
- "Detect and Fix Task Overruns on Arduino Hardware"
- "Detect and Fix Task Overruns on BeagleBoard Hardware"
- "Detect and Fix Task Overruns on PandaBoard Hardware"
- "Detect and Fix Task Overruns on NXT Brick"

Digital output to set on overrun

This parameter appears when the **Target hardware** parameter is set to Arduino Mega 2560, Arduino Uno, and Arduino Nano and the **Enable** overrun detection check box is selected.

Select the digital output pin the Arduino hardware uses to signal a task overrun.

Do not use a pin that is assigned to another block within the model.

Settings

Default: 13

- "Enable overrun detection" on page 1-576
- "Detect and Fix Task Overruns on Arduino Hardware"

Т

Enable communication between two NXT bricks

This parameter appears when the **Target hardware** parameter is set to LEGO MINDSTORMS NXT.

You can enable direct Bluetooth communication between two NXT bricks. Enabling this parameter makes the **Bluetooth mode** parameter appear.

Enabling the **Enable communication between two NXT bricks** parameter disables the **External mode** parameter LEGO MINDSTORMS NXT hardware.

Settings

Default: Disabled

Disabled

Disable communication between two NXT bricks.

Enabled

Enable direct Bluetooth communication between two NXT bricks.

- "Bluetooth mode" on page 1-579
- "Slave Bluetooth address" on page 1-580
- "Exchange Data Between Two NXT Bricks"
- LEGO MINDSTORMS NXT Send via Bluetooth Connection
- LEGO MINDSTORMS NXT Receive via Bluetooth Connection

Bluetooth mode

This parameter appears when the **Target hardware** parameter is set to LEGO MINDSTORMS NXT.

If you enable the **Enable communication between two NXT bricks** parameter, configure the Bluetooth device on one NXT brick to be a Bluetooth master or slave.

This parameter only applies to Bluetooth communications between two NXT bricks. It does not apply to Bluetooth communications between the host computer and the NXT brick.

Selecting Master makes the Bluetooth slave address parameter appear.

Settings

Default: Master

Master

The Bluetooth device on the NXT brick operates as a master. Selecting this option enables the **Slave Bluetooth address** parameter.

Slave

The Bluetooth device on the NXT brick operates as a slave.

- "Enable communication between two NXT bricks" on page 1-578
- "Slave Bluetooth address" on page 1-580
- "Exchange Data Between Two NXT Bricks"
- LEGO MINDSTORMS NXT Send via Bluetooth Connection
- LEGO MINDSTORMS NXT Receive via Bluetooth Connection

1

Slave Bluetooth address

This parameter appears when the **Target hardware** parameter is set to LEGO MINDSTORMS NXT and the **Bluetooth mode** parameter is set to Master.

Enter the address of the slave Bluetooth device on other NXT brick.

- "Enable communication between two NXT bricks" on page 1-578
- "Bluetooth mode" on page 1-579
- "Exchange Data Between Two NXT Bricks"
- LEGO MINDSTORMS NXT Send via Bluetooth Connection
- LEGO MINDSTORMS NXT Receive via Bluetooth Connection

Host name

This parameter appears when the **Target hardware** parameter is set to BeagleBoard or PandaBoard.

When you use the Support Package Installer to update the firmware on the BeagleBoard or PandaBoard hardware, the Support Package Installer automatically gets the value of the IP address from the BeagleBoard or PandaBoard hardware and applies it to this parameter.

If you swap boards, or change the IP address of the BeagleBoard or PandaBoard hardware, get the value of the new IP address and enter it here.

- "User name" on page 1-582
- "Password" on page 1-583
- "Build directory" on page 1-584
- "Configure Network Connection with BeagleBoard Hardware"
- "Configure Network Connection with PandaBoard Hardware"
- "Replace Firmware on BeagleBoard Hardware"
- "Replace Firmware on PandaBoard Hardware"
- "Run Model on BeagleBoard Hardware"
- "Run Model on PandaBoard Hardware"

User name

This parameter appears when the **Target hardware** parameter is set to BeagleBoard or PandaBoard.

Enter the root user name for ${\rm Linux}^{{\rm \tiny (\!\!\!\!\ R)}}$ running on the BeagleBoard or PandaBoard hardware.

When you use the Support Package Installer to update the BeagleBoard or PandaBoard firmware, the Support Package Installer automatically applies the value you entered there to this parameter.

Settings

BeagleBoard Default: ubuntu

PandaBoard Default: linaro

- "Host name" on page 1-581
- "Password" on page 1-583
- "Build directory" on page 1-584
- "Replace Firmware on BeagleBoard Hardware"
- "Replace Firmware on PandaBoard Hardware"
- "Run Model on BeagleBoard Hardware"
- "Run Model on PandaBoard Hardware"

Password

This parameter appears when the **Target hardware** parameter is set to BeagleBoard or PandaBoard.

Enter the root password for Linux running on the BeagleBoard or PandaBoard hardware.

When you use the Support Package Installer to update the firmware on the BeagleBoard or PandaBoard hardware, the Support Package Installer automatically applies the value you entered there to this parameter.

Settings

BeagleBoard Default: temppwd

PandaBoard Default: linaro

- "Host name" on page 1-581
- "User name" on page 1-582
- "Build directory" on page 1-584
- "Replace Firmware on BeagleBoard Hardware"
- "Replace Firmware on PandaBoard Hardware"
- "Run Model on BeagleBoard Hardware"
- "Run Model on PandaBoard Hardware"

T

Build directory

This parameter appears when the **Target hardware** parameter is set to BeagleBoard or PandaBoard.

Enter the build directory for Linux running on the BeagleBoard or PandaBoard hardware.

When you use the Support Package Installer to update the firmware on the BeagleBoard or PandaBoard hardware, the Support Package Installer automatically applies the value you entered there to this parameter.

Settings

BeagleBoard Default: /home/ubuntu

PandaBoard Default: /home/linaro

See Also

- "Host name" on page 1-581
- "User name" on page 1-582
- "Password" on page 1-583
- "Replace Firmware on BeagleBoard Hardware"
- "Replace Firmware on PandaBoard Hardware"
- "Run Model on BeagleBoard Hardware"
- "Run Model on PandaBoard Hardware"

Set host COM port

This parameter appears when the **Target hardware** parameter is set to LEGO MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno.

Automatically detect or manually set the COM port your host computer uses to communicate with the target hardware.

Warning Do not connect Arduino Uno and Arduino Mega 2560 to a RS-232 serial interface, commonly found on computers and equipment. RS-232 interfaces can use voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings

Default: Automatically

```
Automatically
```

Let the software determine which COM Port your host computer uses.

Manually

Select this option to display the COM port number parameter.

See Also

- "Configure Host COM Port Manually"
- "COM port number" on page 1-585.
- "Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate" on page 1-587.

COM port number

This parameter appears when the **Target hardware** parameter is set to LEGO MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno, and the **Set host COM port** parameter is set to Manually.

Manually set the number of the COM Port the host computer uses to communicate with the target hardware, and then enter it here.

Warning Do not connect Arduino Uno and Arduino Mega 2560 to a RS-232 serial interface, commonly found on computers and equipment. RS-232 interfaces can use voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings

Default: 0

See Also

- "Configure Host COM Port Manually"
- "Set host COM port" on page 1-584
- "Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate" on page 1-587.

Analog input reference voltage

This parameter appears when the **Target hardware** parameter is set to Arduino Mega 2560 or Arduino Uno.

Set the reference voltage used to measure inputs to the ANALOG IN pins.

Warning Only connect an external power source to AREF while this parameter is set to **External**. Connecting an external power source to AREF while this parameter is set to any other option exposes the internal voltage references to the external voltage. This voltage difference can damage your hardware.

Do not connect Arduino Uno and Arduino Mega 2560 to voltages greater than 5 Volts. These greater voltages can damage your Arduino hardware.

Settings

Default: Default

Default

Use the default operating voltage of the board. For Arduino Uno and Arduino Mega 2560 the operating voltage is 5 Volts.

Internal (1.1 V)

Valid for Arduino Mega 2560 only: Use the internal 1.1 Volt reference.

Internal (2.56 V)

Valid for Arduino Mega 2560 only: Use the internal 2.56 Volt reference.

External

On the Arduino Uno, Arduino Nano and Arduino Mega 2560, use an external 0-5 volt power supply connected to the AREF pin. This voltage

should match the voltage of the power supply connected to the Arduino hardware. If your application requires low-noise measurements, use this option with a filtered power supply.

See Also

• Arduino Analog Input

Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate

Arduino Uno hardware has one serial port, Serial 0. Arduino Mega 2560 hardware has four serial ports, Serial 0 through Serial 3.

Set the baud rate of the serial port on the Arduino hardware.

If you set **Set host COM port** to Manually, then set **Serial 0 baud rate** as described in "Configure Host COM Port Manually".

Settings

Default: 9600

300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 128000, 500000, 1000000

See Also

- "Configure Host COM Port Manually"
- "Set host COM port" on page 1-584
- Arduino Serial Receive
- Arduino Serial Transmit

IP address for the Arduino ethernet shield

The IP address of the Arduino ethernet shield.

MAC address for the Arduino ethernet shield

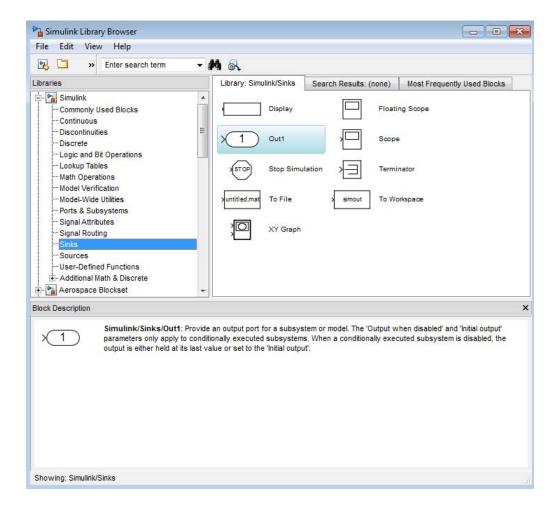
The machine address of the Arduino ethernet shield.

2

Library Browser

- "About the Library Browser" on page 2-2
- "Open the Library Browser" on page 2-5
- "Libraries Pane" on page 2-6
- "Blocks Pane" on page 2-9
- "Block Description Pane" on page 2-14
- "Search Toolbar" on page 2-15
- "Found Pane" on page 2-18
- "Most Frequently Used Blocks Pane" on page 2-21
- "Library Data Repository" on page 2-22
- "Library Browser Keyboard Shortcuts" on page 2-23

About the Library Browser


Use the Library Browser to browse and search Simulink block libraries for blocks to use in your models. You can also select from a list of your most frequently used blocks.

The following figure shows the Library Browser with:

- The Sinks library selected from the Libraries pane (left-most pane)
- The Out1 block selected in the Blocks pane, which lists the blocks from the library selected in the Libraries pane (Sinks, in this example)
- A Block Description pane for the Out1 block (the block selected in the Blocks pane), at the bottom of the Library browser.

The Library Browser has a search box for searching for blocks or libraries whose names that contain the search term you specify.

The Most Frequently Used Blocks pane displays a list of the blocks you have added the most often.

For details about Library Browser features, see:

- "Libraries Pane" on page 2-6
- "Blocks Pane" on page 2-9
- "Most Frequently Used Blocks Pane" on page 2-21
- "Block Description Pane" on page 2-14
- "Search Toolbar" on page 2-15

• "Found Pane" on page 2-18

For information about key tasks involving the Library Browser, see:

- "Open the Library Browser" on page 2-5
- "Populate a Model"
- "Add Blocks"
- "Add Libraries to the Library Browser"

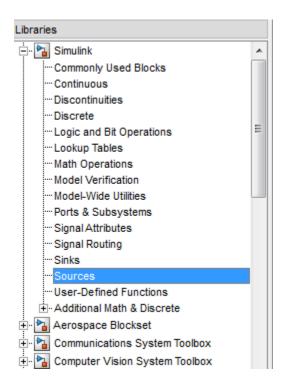
Open the Library Browser

When you open the Simulink software, the Library Browser opens. For details, see "Start the Simulink Software".

Libraries Pane

In this section ...

"About the Libraries Pane" on page 2-6


"Selecting Nodes" on page 2-7

"Expanding and Collapsing Nodes" on page 2-8

"Refreshing the Tree View" on page 2-8

About the Libraries Pane

The Libraries pane allows you to select block libraries for browsing. The pane displays a tree-structured directory (tree view) of libraries installed on your system, each of whose nodes you can select with your mouse or keyboard. Selecting a node displays the contents of the corresponding library in the Blocks pane. The Libraries pane indicates the selected library via a selection cursor that highlights the corresponding node.

Selecting Nodes

You can use your keyboard or your mouse to select a node in the tree view. To select a node with the mouse, first use the Libraries pane's scroll bars, if necessary, to move the node into view. Then click the node. To select a node with the keyboard, use the keyboard's **Up** or **Down** arrow key to move the tree's node selection cursor to the desired node.

Note Selecting a node can cause the Library Browser to update its library data repository (see "Library Data Repository" on page 2-22). In this case, it displays an advisory dialog box while the update is in process.

Expanding and Collapsing Nodes

To facilitate navigation of large directory trees, the Libraries pane displays libraries containing sublibraries as expandable nodes, each containing a toggle button labeled + or -, depending on whether the node is collapsed or expanded. Clicking the button expands or collapses its node to show or hide the corresponding parent library's children. You can also expand or collapse the currently selected node by pressing the **Right** or **Left** arrow keys on your keyboard, respectively.

Refreshing the Tree View

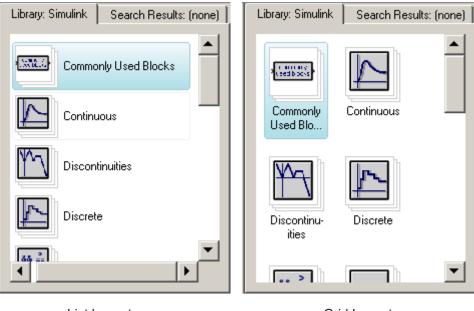
To refresh the tree view displayed in the Libraries pane, select **Refresh Tree View** from the Library Browser's **View** menu. The Library Browser adds or removes any libraries from the tree view that have been added or deleted, respectively, from the MATLAB path since the view was last updated.

Blocks Pane

In this section...

"About the Blocks Pane" on page 2-9
"Choosing the Blocks Pane's Layout" on page 2-10
"Setting Icon Size" on page 2-11
"Selecting Blocks" on page 2-12
"Creating an Instance of a Library Block in a Model" on page 2-12
"Displaying a Library Block's Parameters" on page 2-12
"Displaying Help for a Library Block" on page 2-12
"Displaying the Contents of a Sublibrary" on page 2-12
"Displaying a Block or Sublibrary's Parent" on page 2-13

About the Blocks Pane


The Blocks pane in the Library Browser displays the contents of the library selected in the Libraries pane (see "Libraries Pane" on page 2-6).

File Edit View Help				
Enter search term	- M 🔍			
ibraries	Library: Simu	link/Commonly Us	Search Results:	
Simulink Commonly Used Blocks Continuous		Bus Creator	1	Bus Selector
Discontinuities Discrete	1	Constant	> Convert	Data Type Conversion
Logic and Bit Operations Lookup Tables Math Operations	> z-1 >	Delay	ł	Demux
Model Verification Model-Wide Utilities Ports & Subsystems	E	Discrete-Time Integrator	×1 ×1	Gain
Signal Attributes Signal Routing Sinks	두	Ground	1	▶ In1
Sources User-Defined Functions	> 1/5	Integrator	AND	Logical Operator
Additional Math & Discrete Aerospace Blockset Communications System Toolbox		Mux	>1) Out1
🕂 🎦 Computer Vision System Toolbox	×,	Product) <= }	Relational Operator
DSP System Toolbox Data Acquisition Toolbox	**	Saturation	,	Scope
E- Pa Embedded Coder - Pa Fuzzy Logic Toolbox - Pa Gauges Blockset	sin our	Subsystem	×++	Sum
HDL Verifier		Switch	Ŕ	Terminator
Painstrument Control Toolbox Pai Model Predictive Control Toolbox Pain Neural Network Toolbox	*	Vector Concatenate		

You can use the Blocks pane to browse the contents of the selected library, to view a library block's parameters or help, and to create instances of library blocks in models.

Choosing the Blocks Pane's Layout

The Library Browser can display blocks in either a list (single-column) layout or a screen-saving grid layout. To choose a layout, select **List** or **Grid** from the Library Browser's **View > Layout** menu.

List Layout

Grid Layout

Tip

Setting the Library Browser's layout option to grid and its icon size to compact (see "Setting Icon Size" on page 2-11) results in the most compact display of a library's contents in the Blocks pane.

Setting Icon Size

The Library Browser's **View > Icon Size** menu allows you to select any of four icon sizes: **Compact (Ctrl+1)**, **Small (Ctrl+2)**, **Medium (Ctrl+3)**, **Large (Ctrl+4)**. The compact option eliminates the use of rectangles to distinguish block icons from library icons and thus takes up the least amount of space. Use this option if you want to maximize the number of icons visible in the Blocks pane.

Selecting Blocks

Many Blocks pane procedures require you to select a block displayed in the pane. To select a block, click it with the mouse. The Library Browser moves the block selection cursor to the selected block.

Creating an Instance of a Library Block in a Model

To create an instance of a library block in an existing model, select the block in the Blocks pane and drag it into the model's window.

To create an instance of a library block in a new model, select the block in the Blocks pane and then select **Add to a new model** from the library block's context menu or **Add Selected Block to a New Model** from the Library Browser's **Edit** menu.

Displaying a Library Block's Parameters

To display a library block's parameter dialog box, double-click the block in the Blocks pane or select **Block parameter** from the block's context menu.

Note The dialog box is disabled to prevent you from using it to change a library block's parameters.

Displaying Help for a Library Block

To display help for a library block, select the block and then select **Help** from the block's context menu or from the Library Browser's **Help** menu.

Displaying the Contents of a Sublibrary

To display the contents of a sublibrary appearing in the Blocks pane, double-click the library. The library's contents replaces the parent's contents in the Blocks pane.

Displaying a Block or Sublibrary's Parent

To display the parent of an item (block or library) displayed in the Blocks pane, select **Go to parent** from the item's context menu. The contents of the parent replaces the contents of the child in the Blocks pane.

Block Description Pane

This pane displays a description of the block selected in the Blocks pane. The text of the description is the same as the text of the description that appears on the block's parameter dialog box.

To hide this pane, deselect **Show block descriptions** on the Library Browser's **View** menu.

Search Toolbar

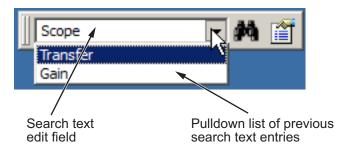
In this section...

"About the Search Toolbar" on page 2-15 "Using the Search Toolbar to Find Blocks" on page 2-15 "Search Text Combo Box" on page 2-16 "Search Options Menu" on page 2-16 "Search Button" on page 2-17

About the Search Toolbar

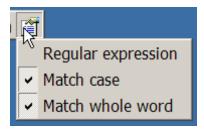
The Library Browser's **Search** toolbar allows you to search the block libraries installed on your system for blocks whose names contain or match a text string that you specify. The **Search** toolbar displays the blocks it finds in the Found pane of the Library Browser. You can use the Found pane to view a found block's help or parameters or create an instance of the block in a model (see "Found Pane" on page 2-18 for more information).

Using the Search Toolbar to Find Blocks


To find blocks whose names contain or match a specified text string:

- 1 Enter the string in the toolbar search text combo box (see "Search Text Combo Box" on page 2-16).
- **2** Use the toolbar search options menu to specify the search options you want to use, e.g., match whole words (see "Search Options Menu" on page 2-16).
- **3** Select the toolbar **Search** button to start the search.

The Library Browser searches the libraries installed on your system whose names contain or match the search string you specified, depending on the options you specified. It displays the results of the search in its Found pane (see "Found Pane" on page 2-18).


Search Text Combo Box

The search text combo box allows you to specify the text string to be used to search the block libraries on your system. The combo box consists of an edit field and a drop-down list of search strings that you previously entered in the current or previous sessions. To specify a string, enter the string in the edit field or choose a string from the drop-down list.

Search Options Menu

The **Search Options** menu allows you to specify various search options. To display the menu, select the search options menu button on the **Search** toolbar.

Regular Expression

Treat search text as a MATLAB regular expression (see "Regular Expressions").

Match Case

Consider case when matching search text against block names.

Match Whole Word

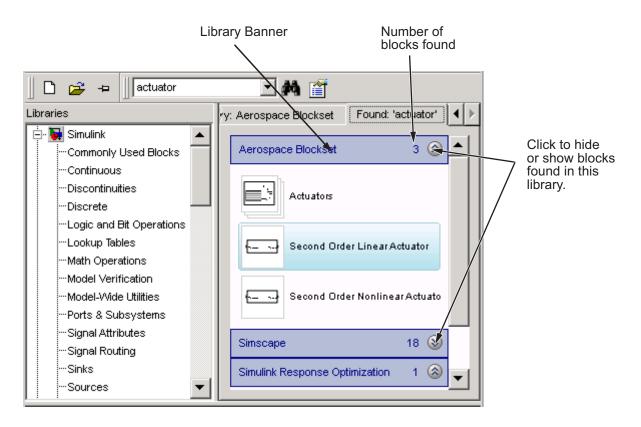
Allow a match only if the search string matches a word, i.e., text set off by white space, in a block's name.

Search Button

Selecting this button initiates a search of the block libraries on your system, using the text string and search options specified in the toolbar's search text combo box (see "Search Text Combo Box" on page 2-16) and search options menu (see "Search Options Menu" on page 2-16), respectively.

Found Pane

In this section ...


"About the Found Pane" on page 2-18

"Selecting a Found Block in Library View" on page 2-19

"Displaying a Found Block's Path" on page 2-20

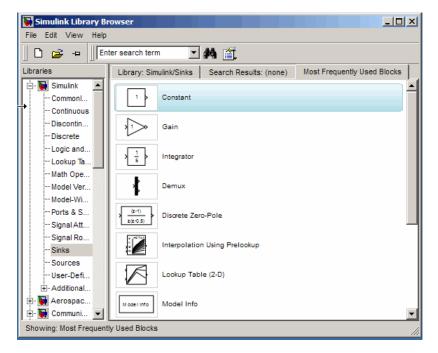
About the Found Pane

The Found pane allows you to view and select blocks found by the Library Browser's **Search** toolbar. The pane displays the blocks found by the tool grouped by library. A banner at the top of each group displays the name of the top-level library containing the found blocks, the number of blocks found in the library, and a button that allows you to hide or display the search results for the library.

You can use the Found pane to perform many of the same tasks you can perform with the Blocks pane, including creating instances of found blocks in models and other libraries, displaying a found block's parameters, and displaying help for a found block. The procedures for these tasks are the same as for the Blocks pane (see "Blocks Pane" on page 2-9 for more information).

Selecting a Found Block in Library View

To select a found block in the Blocks pane, select the block in the Found pane and then select **Select in library view** from the block's context menu or enter Ctrl+R. This brings the Blocks pane forward in the Library Browser with the found block in view and selected.


Displaying a Found Block's Path

To display the path of a found block, move the cursor over the block. The block's path appears in a tooltip.

himation Support Utilities Found: 'actuator'
Actuators
Aerospace Blockset/Actuators
Second Order Nonlinear Actuato
Simscape 18 🎯
Simulink Response Optimization 1 🔕
PID tuning with actuator constrai

Most Frequently Used Blocks Pane

Open the Most Frequently Used Blocks pane from the third tab in the Library Browser.

For details, see "Selecting Your Frequently Used Blocks From the Library Browser".

Library Data Repository

To allow you to browse and search libraries without first loading them, the Library Browser maintains a repository of data about each library installed on your system. The data includes block paths and icons. The Library Browser updates the repository when you select a library whose contents have changed since the last time you selected the library.

Library Browser Keyboard Shortcuts

Task	Shortcut
Select Libraries or Blocks panes or tools on the Search toolbar.	Tab
Open a model.	Ctrl+O
Move node selection down in the Libraries pane tree view.	Down Arrow
Move node selection up in the Libraries pane tree view.	Up Arrow
Expand a node in the Libraries pane tree view.	Right Arrow
Collapse a node in the Libraries pane tree view.	Left Arrow
Select a block found with the search tool in the Blocks pane.	Ctrl+R
Insert the selected block in a new model.	Ctrl+I
Increase the Library Browser's font size.	Ctrl++
Decrease the Library Browser's font size	Ctrl+-
Use compact block icons.	Ctrl+1
Use small block icons.	Ctrl+2
Use medium block icons.	Ctrl+3
Use large block icons.	Ctrl+4
Find a block.	Ctrl+F

Signal Properties Dialog Box

- "Signal Properties Dialog Box Overview" on page 3-2
- "Signal Properties Controls" on page 3-4
- "Logging and Accessibility Options" on page 3-6
- "Simulink[®] Coder[™] Options" on page 3-8
- "Data Transfer Options for Concurrent Execution" on page 3-9
- "Documentation Options" on page 3-11

Signal Properties Dialog Box Overview

The **Signal Properties** dialog box lets you display and edit signal properties. To display the dialog box, either

• Select the line that represents the signal whose properties you want to set and then choose **Signal Properties** from the signal's context menu or from the Simulink **Edit** menu

or

• Select a block that outputs or inputs the signal and from the block's context menu, select **Signals & Ports** and then either **Input Port Signal Properties** or **Output Port Signal Properties**, then select the port to which the signal is connected from the resulting menu.

The Signal Properties dialog box appears.

🞦 Signal Properties:			×
Signal name:			
Signal name must resolve	to Simulink signal ol	bject	
Show propagated signals			
Logging and accessibility	Code Generation	Documentation	
🔲 Log signal data 🔲 Test j	point		
Logging name			
Use signal name			-
Data			
Limit data points to last:	5000		
Decimation:	2		
ОК	Cancel	Help App	oly

The dialog box includes the following controls.

• "Signal Properties Controls" on page 3-4

- "Logging and Accessibility Options" on page 3-6
- "Simulink[®] Coder[™] Options" on page 3-8
- "Data Transfer Options for Concurrent Execution" on page 3-9
- "Documentation Options" on page 3-11

Signal Properties Controls

Signal name

Name of signal.

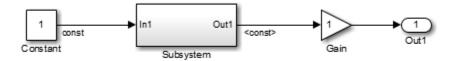
Signal name must resolve to Simulink signal object

Specifies that either the base MATLAB workspace or the model workspace must contain a Simulink.Signal object with the same name as this signal. Simulink software displays an error message if it cannot find such an object when you update or simulate the model containing this signal.

Note Simulink.Signal objects in the model workspace must have their storage class set to Auto. See "Model Workspaces" for more information.

When **Signal name must resolve to Simulink signal object** is enabled, a signal resolution icon appears by default to the left of any label on the signal. The icon looks like this:

See "Signal to Object Resolution Indicator" for more information.


Show propagated signals

Note This option is available only for signals that originate from blocks that support signal label propagation. For a list of the blocks, see "Blocks That Support Signal Label Propagation".

Enabling this parameter causes Simulink to create a propagated signal label.

For example, in the following model, the output signal from the Subsystem block is configured for signal label propagation. The propagated signal label

(<const>) is based on the name of the upstream output signal of the Constant block (const).

For more information, see "Signal Label Propagation".

Logging and Accessibility Options

Select the **Logging and accessibility** tab on the **Signal Properties** dialog box to display controls that enable you to specify signal logging and accessibility options for this signal.

Logg	jing and accessibility	Co	ode Generation	Documentation	
🔳 Lo	g signal data 🛛 🔲 Test	poir	nt		
Logo	ging name				
Use	signal name				-
- Data					
Data	1				
	Limit data points to la	st:	5000		
	Decimation:		2		
Data	Limit data points to la	st:			

Log signal data

Select this option to cause Simulink software to save this signal's values to the MATLAB workspace during simulation. See "Export Signal Data Using Signal Logging" for details.

Test point

Select this option to designate this signal as a test point. See "Test Points" for details.

Logging name

This pair of controls, consisting of a list box and an edit field, specifies the name associated with logged signal data.

Logging name	
Use signal name	•
Use signal name	
Custom	

Simulink software uses the signal's signal name as its logging name by default. To specify a custom logging name, select Custom from the list box and enter the custom name in the adjacent edit field.

Data

This group of controls enables you to limit the amount of data that Simulink software logs for this signal.

Data			
	Limit data points to last:	5000	
	Decimation:	2	

The options are as follows.

Limit data points to last

Discard all but the last N data points where N is the number entered in the adjacent edit field.

Decimation

Log every Nth data point where N is the number entered in the adjacent edit field. For example, suppose that your model uses a fixed-step solver with a step size of $0.1 \, \text{s}$. if you select this option and accept the default decimation value (2), Simulink software records data points for this signal at times 0.0, 0.2, 0.4, etc.

Simulink Coder Options

The following controls set properties used by Simulink Coder to generate code from the model. You can ignore them if you are not going to generate code from the model.

Package

Select a package that defines the custom storage class you want to apply. The default value, ---None---, sets internal storage class attributes instead of creating an embedded signal object.

You can select either the built-in Simulink or mpt package or another package. Click **Refresh** to load any other available packages, including user-defined packages, on the MATLAB path. For more information, see "Custom Storage Classes Using Embedded Signal Objects"

Storage class

Select the storage class of this signal from the list. See "Interface Signals to External Code", "Interface States to External Code", and "Storage Classes for Data Store Memory Blocks" for information on how to use the listed options.

Storage type qualifier

Enter a storage type qualifier for this signal. For more information, see "Interface Signals to External Code", "Interface States to External Code", and "Storage Classes for Data Store Memory Blocks".

Data Transfer Options for Concurrent Execution

This tab displays the data transfer options for configuring models for targets with multicore processors. To enable this tab, in the Model Explorer for the model, right-click **Configuration**, then select the **Show Concurrent Execution** option.

In this section...

"Specify data transfer settings" on page 3-9

"Data transfer handling option" on page 3-9

"Extrapolation method (continuous-time signals)" on page 3-9

"Initial condition" on page 3-9

Specify data transfer settings

Enable custom data transfer settings. For more information, see "Configuring Data Transfer Communications".

Data transfer handling option

Select a data transfer handling option. For more information, see "Configuring Data Transfer Communications".

Extrapolation method (continuous-time signals)

Select a data transfer extrapolation method. For more information, see "Configuring Data Transfer Communications".

Initial condition

For discrete signals, this parameter specifies the initial input on the reader side of the data transfer. It applies for data transfer types Ensure Data Integrity Only and Ensure deterministic transfer (maximum delay). Simulink does not allow this value to be Inf or NaN.

For continuous signals, the extrapolation method of the initial input on the reader side of the data transfer uses this parameter. It applies for data

transfer types Ensure Data Integrity Only and Ensure deterministic transfer (maximum delay). Simulink does not allow this value to be Inf or NaN.

For more information, see "Configuring Data Transfer Communications".

Documentation Options

Description

Enter a description of the signal in this field.

Document link

Enter a MATLAB expression in the field that displays documentation for the signal. To display the documentation, click "Document Link." For example, entering the expression

```
web(['file:///' which('foo_signal.html')])
```

in the field causes MATLAB software's default Web browser to display foo_signal.html when you click the field's label.

Simulink Preferences Window

- "Main Pane" on page 4-2
- "Display Defaults for New Models Pane" on page 4-27
- "Font Defaults for New Models Pane" on page 4-34
- "Editor Defaults Pane" on page 4-35
- "Data Management Defaults Pane" on page 4-39
- "Configuration Defaults Pane" on page 4-44

Main Pane

In this section...

"Simulink Preferences Window Overview" on page 4-3

"Model File Change Notification" on page 4-6

"Updating or simulating the model" on page 4-7

In this section
"Action" on page 4-8
"First editing the model" on page 4-10
"Saving the model" on page 4-11
"Autosave" on page 4-12
"Save before updating or simulating the model" on page 4-13
"Save backup when overwriting a file created in an older version of Simulink" on page 4-15
"Warn when opening Model blocks with Normal Mode Visibility set to off" on page 4-16
"Notify when loading an old model" on page 4-17
"Do not load models created with a newer version of Simulink" on page 4-18
"Callback tracing" on page 4-19
"Open the sample time legend whenever sample time display is changed" on page 4-20
"File generation control" on page 4-21
"Simulation cache folder" on page 4-22
"Code generation folder" on page 4-23
"Print" on page 4-24
"Export" on page 4-24
"Clipboard" on page 4-25
"File format for new models and libraries" on page 4-26

Simulink Preferences Window Overview

The Simulink Preferences window comprises the following panes:

• General Preferences (root level)

Set preferences for file change, autosave, version notifications, and other behaviors relating to model files

• Display Defaults for New Models

Configure display options for the Model Browser, block connection lines and port data types.

• Font Defaults for New Models

Configure font options for blocks, lines and annotations.

• Editor Defaults

Configure the Simulink Editor.

• Data Management Defaults

Configure for exporting variables to MATLAB scripts.

• Configuration Defaults

Edit the template Configuration Parameters to be used as defaults for new models.

Click items in the tree to select panes.

Configuration

- **1** On the root level pane, select the check boxes to configure preferences.
- 2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

Your settings affect the behavior of all Simulink models, including those currently open, and all subsequent models. Your preference settings are preserved for the next time you use the software.

See Also

- "Main Pane" on page 4-2
- Model File Change Notification
- "Display Defaults for New Models Pane" on page 4-27
- "Font Defaults for New Models Pane" on page 4-34

- "Data Management Defaults Pane" on page 4-39
- "Configuration Defaults Pane" on page 4-44

Model File Change Notification

Use these preferences to specify notifications if the model has changed on disk when you update, simulate, edit or save the model. When updating or simulating, you can choose the action to take: warn, error, reload if unmodified, or show a dialog box where you can choose to reload or ignore. For more information, see Model File Change Notification.

The frame contains these controls:

- "Updating or simulating the model" on page 4-7
- "Action" on page 4-8
- "First editing the model" on page 4-10
- "Saving the model" on page 4-11

Updating or simulating the model

Specify whether to notify if the model has changed on disk when updating or simulating the model.

Settings

Default: On

🔽 On

Notify if the model has changed on disk when updating or simulating the model. Select the action to take in the **Action** list.

C Off

Do not notify if the model has changed on disk when updating or simulating the model.

Tip

To programmatically check whether the model has changed on disk since it was loaded, use the function sllsFileChangedOnDisk.

Dependency

This parameter enables Action.

Command-Line Information

Parameter: MDLFileChangedOnDiskChecks **Type:** struct, field name: CheckWhenUpdating **Value:** true | false | 1 | 0 **Default:** true

See Also

Action

Select what action to take if the file has changed on disk since it was loaded.

Settings

Default: Warning

Warning

Displays a warning in MATLAB command window

Error

Displays an error, at the MATLAB command window if simulating from the command line, or if simulating from a menu item, in the Simulation Diagnostics window.

Reload model (if unmodified)

Reloads if the model is unmodified. If the model is modified, you see the prompt dialog.

Show prompt dialog

Shows prompt dialog. In the dialog, you can choose to close and reload, or ignore the changes.

Tip

To programmatically check whether the model has changed on disk since it was loaded, use the function slIsFileChangedOnDisk.

Dependencies

This parameter is enabled by the parameter **Updating or simulating the model**.

Command-Line Information

```
Parameter: MdlFileChangedOnDiskHandling
Type: string
Value: 'Warning' | 'Error' | 'Reload model (if unmodified)' |
'Show prompt dialog'
Default: 'Warning'
```

See Also

First editing the model

Specify whether to notify if the file has changed on disk when editing the model.

Settings

Default: On

🔽 On

Displays a warning if the file has changed on disk when you modify the block diagram. Any graphical operation that modifies the block diagram (e.g., adding a block) causes a warning dialog to appear. Any command-line operation that causes the block diagram to be modified (e.g., a call to set_param) will result in a warning like this at the command line:

Warning: Block diagram 'mymodel' is being edited but file has changed on disk since it was loaded. You should close and reload the block diagram.

C Off

Do not check for changes on disk when first editing the model.

Tip

To programmatically check whether the model has changed on disk since it was loaded, use the function sllsFileChangedOnDisk.

Command-Line Information

Parameter: MDLFileChangedOnDiskChecks **Type:** struct, field name: CheckWhenEditing **Value:** true | false | 1 | 0 **Default:** true

See Also

Saving the model

Specify whether to notify if the file has changed on disk when saving the model.

Settings

Default: On

🔽 On

Notify if the file has changed on disk when you save the model.

- The save_system function displays an error, unless the OverwriteIfChangedOnDisk option is used.
- Saving the model by using the menu (**File > Save**) or a keyboard shortcut causes a dialog to be shown. In the dialog, you can choose to overwrite, save with a new name, or cancel the operation.

C Off

Do not check for changes on disk when saving the model.

Tip

To programmatically check whether the model has changed on disk since it was loaded, use the function sllsFileChangedOnDisk.

Command-Line Information

Parameter: MDLFileChangedOnDiskChecks **Type:** struct, field name: CheckWhenSaving **Value:** true | false | 1 | 0 **Default:** true

See Also

Autosave

Use the Autosave preferences to specify whether to automatically save a backup copy of the model before updating or simulating, or when overwriting with a newer version of Simulink.

For more information, see these controls:

- "Save before updating or simulating the model" on page 4-13
- "Save backup when overwriting a file created in an older version of Simulink" on page 4-15

Save before updating or simulating the model

Specify whether to automatically save a backup copy of the model before updating or simulating.

Settings

Default: On

🔽 On

If the model has unsaved changes, automatically save a backup copy of the model before updating or simulating. This autosave copy can be useful for crash recovery.

The copy is saved in the same directory as the model, with the name *MyModel.slx.autosave* or *MyModel.mdl.autosave*.

```
C Off
```

Do not automatically save a copy before updating or simulating.

Tips

• If you open or load a model that has a more recent autosave copy available, then after the model loads, a dialog box appears to prompt you whether to restore, ignore, or discard the autosave copy. If there are multiple models involved, then the following nonmodal Model Recovery dialog appears.

			at you are trying to load		
ginal model file. (As <n< th=""><th>ame>.mdl.or</th><th>iginal.)</th><th></th><th></th><th></th></n<>	ame>.mdl.or	iginal.)			
Autosave Ignore	Model	Path	Model Last Modified	Autosave (Ireated
lete All Ignore A					
	model1	H:\Documents\Smalltests	19-Dec-2007 14:09:55	19-Dec-2007	14:15:24
- F	model2	H:\Documents\Smalltests	07-Dec-2007 10:19:02	19-Dec-2007	14:15:31
N	model3	H:\Documents\Smalltests	17-Dec-2007 12:47:49	19-Dec-2007	14:15:27
				1	Help
	Autosave Ignore lete All Ignore A	Autosave Ignore Model lete All Ignore All model1	Autosave Ignore Model Path lete All Ignore All model1 H:\Documents\Smalltests Model2 H:\Documents\Smalltests	Autosave Ignore Model Path Model Last Modified lete All Ignore All model1 H:\Documents\Smalltests 19-Dec-2007 14:09:55 model2 H:\Documents\Smalltests 07-Dec-2007 10:19:02 model3 H:\Documents\Smalltests 17-Dec-2007 12:47:49	Autosave Ignore Model Path Model Last Modified Autosave C lete All Ignore All model1 H:\Documents\Smalltests 19-Dec-2007 14:09:55 19-Dec-2007 model2 H:\Documents\Smalltests 07-Dec-2007 10:19:02 19-Dec-2007 model3 H:\Documents\Smalltests 17-Dec-2007 12:47:49 19-Dec-2007

For each model in the list, you can select a check box to specify whether to **Restore**, **Delete Autosave**, or **Ignore**. Or you can click the **Restore All**, **Delete All** or **Ignore All** button to select that option for all listed models.

Option	Result
Restore	Overwrite the original model file with the autosave copy, and delete the autosave copy. Simulink will close the model and reload from the restored file. If you select the check box to Keep a copy of original model file , you can save copies of the original model files named <i>MyModel.slx.original</i> or <i>MyModel.mdl.original</i> .
Delete Autosave	Delete the autosave copy.
Ignore	Leave the model and the autosave copy untouched. This setting is the default. The next time you open the model, the Model Recovery dialog will reappear and you can choose to restore or delete autosave files.

- If you deliberately close a modified model, any autosave copy is deleted.
- Autosave does not occur for models that are part of the MATLAB installation, so you will not create autosave copies of those models.
- Autosave does not occur if the autosave file or location is read only.
- Autosave does not occur in Parallel Computing Toolbox[™] workers.

Caution If a segmentation violation occurred, then the last autosave file for the model reflects the state of the autosave data prior to the segmentation violation. Because Simulink models might be corrupted by a segmentation violation, Simulink does not autosave a model after a segmentation violation occurs.

Command-Line Information

Parameter: AutoSaveOptions Type: struct, field name: SaveOnModelUpdate Value: true | false | 1 | 0 Default: true

Save backup when overwriting a file created in an older version of Simulink

Specify whether to automatically save a backup copy of the model when overwriting with a newer version of Simulink.

Settings

Default: On

If saving the model with a newer version of Simulink, automatically save a backup copy of the model. This backup copy can be useful for recovering the original file in case of accidental overwriting with a newer version.

The backup copy is saved in the same directory as the model, with the name *MyModel*.slx.Version or *MyModel*.mdl.Version, where Version is the last version that saved the model, e.g., R2010a.

C Off

Do not automatically save a backup copy when overwriting a model with a newer version of Simulink.

Tips

To recover the original model, rename the backup copy to *MyModel*.mdl by deleting the *Version* suffix.

Command-Line Information

Parameter: AutoSaveOptions Type: struct, field name: SaveBackupOnVersionUpgrade Value: true | false | 1 | 0 Default: true

Warn when opening Model blocks with Normal Mode Visibility set to off

Show a warning when you open a model from Model blocks that have Normal Mode Visibility set to off.

All instances of a Normal mode referenced model are part of the simulation. However, Simulink displays only one instance in a model window; that instance is determined by the Normal Mode Visibility setting. Normal mode visibility includes the display of Scope blocks and data port values. When you open a model from a Model block that has Normal Mode Visibility set to off, the referenced model shows data from the instance of that model has Normal Mode Visibility set to on.

Settings

Default: On

🔽 On

After simulation, Simulink displays a warning if you try to open a referenced model from a Model block that has Normal Mode Visibility set to off. Simulink does not open the instance referenced by that Model block, but instead opens the instance that has Normal Mode Visibility set to on. The instance that has Normal Mode Visibility set to on has different input data sources than the instance referenced by the Model block that you opened.

C Off

No warning displayed if, after simulation, you try to open a referenced model from a Model block that has Normal Mode Visibility set to off.

Tips

- The warning box that Simulink displays includes an option to suppress the display of the warning in the future. If you enable that option, this preference is set to off. Use this preference to resume the display of that warning.
- For more information, see "Normal Mode Visibility".

Notify when loading an old model

Specify whether to notify when loading a model last saved in a older version of Simulink software.

Settings

Default: Off

🔽 On

Print a message in the command window when loading a model last saved in an old version of Simulink software.

```
C Off
```

No notification when loading old models.

Tips

- Run slupdate('modelname') to convert the block diagram to the format of the current version of Simulink software.
- For advice on upgrading a model to the current version of Simulink software, see "Consult the Model Advisor".

Command-Line Information

Parameter: NotifyIfLoadOldModel
Type: string
Value: 'on' | 'off'
Default: off

Do not load models created with a newer version of Simulink

Specify whether to load a model last saved in a newer version of Simulink software.

Settings

Default: Off

Do not load any model last saved in a newer version of Simulink software, and print an error message in the command window.

C Off

Load models last saved in a newer version of Simulink software, and print a warning message in the command window.

Tip

If possible, use the **Save As** command to convert the block diagram to the format of the desired version of Simulink software. The **Save As** command allows you to save a model created with the latest version of the Simulink software in formats used by earlier versions. See "Export a Model to a Previous Simulink Version".

Command-Line Information

Parameter: ErrorIfLoadNewModel Type: string Value: 'on' | 'off' Default: off

Callback tracing

Specify whether to display the model callbacks that Simulink software invokes when simulating a model.

Settings

Default: Off

🔽 On

Display the model callbacks in the MATLAB command window as they are invoked.

Callback tracing allows you to determine the callbacks the software invokes, and in what order, when you open or simulate a model.

C Off

Do not display model callbacks.

Command-Line Information

Parameter: CallbackTracing Type: string Value: 'on' | 'off' Default: 'off'

Open the sample time legend whenever sample time display is changed

Specify whether to display the Sample Time Legend whenever Sample Time Display is changed.

Settings

Default: On

🔽 On

Display the Sample Time Legend whenever you change Sample Time Display by selecting Colors, Annotations, or All from the Sample Time Display submenu. The model diagram is updated and the legend opens.

C Off

Do not display the Sample Time Legend whenever Sample Time Display is changed.

Command-Line Information

Parameter: OpenLegendWhenChangingSampleTimeDisplay
Type: string

Value: 'on' | 'off' Default: 'on'

File generation control

Use these preferences to control the locations at which model build artifacts are placed. By default, build artifacts are placed in the current working folder (pwd) at the time update diagram or code generation is initiated. For more information, see these controls:

- "Simulation cache folder" on page 4-22
- "Code generation folder" on page 4-23

Simulation cache folder

Specify root folder in which to put model build artifacts used for simulation.

Settings

Default:''

Enter a string specifying a valid folder path. If no path is specified, build artifacts are placed in the current working folder (pwd) at the time update diagram is initiated.

Tip

You can specify an absolute or relative path to the folder. For example:

- C:\Work\mymodelsimcache and /mywork/mymodelsimcache specify absolute paths.
- mymodelsimcache is a path relative to the current working folder (pwd). The software converts a relative path to a fully qualified path at the time the preference is set. For example, if pwd is '/mywork', the result is /mywork/mymodelsimcache.
- ../test/mymodelsimcache is a path relative to pwd. If pwd is '/mywork', the result is /test/mymodelsimcache.

Command-Line Information

Parameter: CacheFolder Type: string Value: valid folder path Default: ''

See Also

"Simulation Target Output File Control"

Code generation folder

Specify root folder in which to put Simulink Coder code generation files.

Settings

Default:''

Enter a string specifying a valid folder path. If no path is specified, build artifacts are placed in the current working folder (pwd) at the time code generation is initiated.

Tip

You can specify an absolute or relative path to the folder. For example:

- C:\Work\mymodelgencode and /mywork/mymodelgencode specify absolute paths.
- mymodelgencode is a path relative to the current working folder (pwd). The software converts a relative path to a fully qualified path at the time the preference is set. For example, if pwd is '/mywork', the result is /mywork/mymodelgencode.
- ../test/mymodelgencode is a path relative to pwd. If pwd is '/mywork', the result is /test/mymodelgencode.

Command-Line Information

Parameter: CodeGenFolder Type: string Value: valid folder path Default: ''

See Also

"Control the Location for Generated Files" in the Simulink Coder documentation

Print

Use a white canvas (background) or the canvas color of the model when printing a model.

Settings

Default: White

White

Use a white canvas.

Match Canvas Color Match the canvas color of the model.

Command-Line Information

Parameter: PrintBackgroundColorMode
Type: string
Value: White | MatchCanvas | Transparent
Default: White

See Also

"Print and Export Models"

Export

Match the canvas (background) color of the model, use a white canvas, or use a transparent canvas for model files that you export to another file format, such as .png or .jpeg.

Settings

Default: Match Canvas Color

Match Canvas Color

Match the canvas color of the model.

White

Use a white canvas.

Transparent

Use a transparent canvas, so that whatever is behind the canvas image shows through.

Command-Line Information

Parameter: ExportBackgroundColorMode Type: string Value: White | MatchCanvas | Transparent Default: MatchCanvas

See Also

"Export Models to Third-Party Applications"

Clipboard

Match the canvas (background) color of the model, use a white canvas, or use a transparent canvas for model files that you export to another application.

Settings

Default: Match Canvas Color

Match Canvas Color Match the canvas color of the model.

White

Use a white canvas.

Transparent

Use a transparent canvas, so that whatever is behind the canvas image shows through.

Command-Line Information

Parameter: ClipboardBackgroundColorMode Type: string Value: White | MatchCanvas | Transparent Default: MatchCanvas

See Also

"Export Models to Image File Formats"

File format for new models and libraries

Settings

Default:SLX

Specify the default file format for new models and libraries.

MDL

Save new models and libraries in MDL format.

SLX

Save new models and libraries in SLX format.

Command-Line Information

Parameter: ModelFileFormat
Type: string
Value: 'mdl' | 'slx'
Default: slx

Tips

- You can choose model file format when using Save As.
- To set this preference at the command-line, use one of the following commands:

```
set_param(0,'ModelFileFormat','slx')
set_param(0,'ModelFileFormat','mdl')
```

• For information about the SLX model file format, see "Saving Models in the SLX File Format".

Display Defaults for New Models Pane

 Simulink Preferences Display Defaults for New Models Font Defaults for New Models Editor Defaults Data Management Defaults Configuration Defaults Solver Data Import/Export Optimization Diagnostics 	Display Defaults for New Models These values will be inherited by new models Model Browser Show masked subsystems Show library links Display Wide nonscalar lines Show port data types
 Hardware Implementation Model Referencing Simulation Target Code Generation HDL Code Generation 	Revert Help Apply

In this section	
"Simulink Display Defaults Overview" on page 4-27	
"Show masked subsystems" on page 4-29	
"Show library links" on page 4-30	
"Wide nonscalar lines" on page 4-32	
"Show port data types" on page 4-33	

Simulink Display Defaults Overview

Configure display options for the Model Browser, block connection lines and port data types.

Configuration

- **1** Select check boxes to configure display properties that will be applied to all new block diagrams.
- 2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

These values will be inherited by new block diagrams.

See Also

- "Model Browser" (Windows only)
- Signal Display Options

Show masked subsystems

Specify whether masked subsystems and their contents are shown in the Model Browser (Windows only).

Settings

Default: Off

🔽 On

Display masked subsystems and their contents in the Model Browser.

C Off

Do not display masked subsystems and their contents in the Model Browser.

Command-Line Information

Parameter: BrowserLookUnderMasks
Type: string
Value: 'on' | 'off'
Default: 'off'

Show library links

Specify whether library links and their contents are shown in the Model Browser (Windows only).

Settings

Default: Off

🔽 On

Display library links and their contents in the Model Browser.

C Off

Do not display library links and their contents in the Model Browser.

Command-Line Information

Parameter: BrowserShowLibraryLinks
Type: string
Value: 'on' | 'off'
Default: 'off'

Wide nonscalar lines

Specify whether to show thick lines for nonscalar connections between blocks.

Settings

Default: Off

🔽 On

Show thick lines for nonscalar connections between blocks

C Off

Do not show thick lines for nonscalar connections between blocks

Command-Line Information

Parameter: WideVectorLines Type: string Value: 'on' | 'off' Default: 'off'

Show port data types

Specify whether to show the data type on each block port

Settings

Default: Off

🔽 On

Display the data type for each port on each block.

C Off

Do not display data types on block ports.

Command-Line Information

Parameter: ShowPortDataTypes
Type: string
Value: 'on' | 'off'
Default: 'off'

Font Defaults for New Models Pane

Simulink Preferences	Font Defaults for New Models These values will be inherited by new models Blocks		
Font Defaults for New Models	BIOCKS		
Editor Defaults Editor Defaults Editor Defaults Configuration Defaults Con	Arial Plain I0 Sample The quick brown fox jumps over the lazy dog. 1234567890 Lines Arial Plain 9 Sample The quick brown fox jumps over the lazy dog. 1234567890 Annotations		
	Arial Arial Plain Plain 10 Sample The quick brown fox jumps over the lazy dog. 1234567890 Help Apply		

Simulink Font Defaults Overview

Configure font options for blocks, lines and annotations.

Configuration

- **1** Use the drop-down lists to specify font types, styles, and sizes that will be applied to all new block diagrams.
- 2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

These properties will be inherited by new block diagrams.

Editor Defaults Pane

 Refresh Blocks Update Diagram Simulation Debug Model Model Advisor Build Find

In this section...

"Simulink Editor Defaults Overview" on page 4-36

"Use classic diagram theme" on page 4-36

"Scroll wheel controls zooming" on page 4-36

"File Toolbar" on page 4-36

"Print" on page 4-37

"Cut/Copy/Paste" on page 4-37

"Undo/Redo" on page 4-37

"Browse Back/Forward/Up" on page 4-37

"Library/Model Configuration/Model Explorer" on page 4-37

In this section
"Refresh Blocks" on page 4-37
"Update Diagram" on page 4-37
"Simulation" on page 4-37
"Debug Model" on page 4-37
"Model Advisor" on page 4-37
"Build" on page 4-38
"Find" on page 4-38

Simulink Editor Defaults Overview

Configure the Simulink Editor.

These options affect the behavior of all Simulink models. The options relate to the how models appear in terms of the visual theme, the scroll wheel behavior, and the toolbar configuration.

Use classic diagram theme

Cause Simulink diagrams to appear in the Simulink Editor using the visual theme that was used in the Simulink Editor before R2012b.

If you check **Use classic diagram theme**, Simulink does not display content preview. For details, see "Preview Content of Hierarchical Items".

Scroll wheel controls zooming

Use the scroll wheel on the mouse to control zooming instead of scrolling. For more information, see "Zoom and Pan Block Diagrams".

File Toolbar

Specify whether to display the **New/Save**, the **New/Open/Save**, or no file toolbar.

Print

Specify show or hide the **Print** toolbar.

Cut/Copy/Paste

Specify show or hide the Cut/Copy/Paste toolbar.

Undo/Redo

Specify show or hide the **Undo/Redo** toolbar.

Browse Back/Forward/Up

Specify show or hide the Browse Back/Forward/Up toolbar.

Library/Model Configuration/Model Explorer

Specify show or hide the Library/Model Configuration/Model Explorer toolbar.

Refresh Blocks

Specify show or hide the **Refresh Blocks** toolbar.

Update Diagram

Specify show or hide the **Update Diagram** toolbar.

Simulation

Specify show or hide the **Simulation** toolbar.

Debug Model

Specify show or hide the **Debug Model** toolbar.

Model Advisor

Specify show or hide the **Model Advisor** toolbar.

Build

Specify show or hide the **Build** toolbar.

Find

Specify show or hide the ${\bf Find}$ toolbar.

Data Management Defaults Pane

Simulink Preferences	Data Management Defaults Data Object Defaults	
 Display Defaults for New Models Font Defaults for New Models Editor Defaults 	The following setting is used to create parameter and signal objects in the Model Explorer. It is also available in the Data Object Wizard, and for specifying embedded signal objects for signals and block states	
Data Management Defaults	Package: Simulink	Refresh
 Configuration Defaults Solver Data Import/Export Optimization Diagnostics Hardware Implementation Model Referencing Simulation Target Code Generation HDL Code Generation 	Simulink Variable Export Defaults The following settings are used in exporting variables to MATLAB script via the Model Explorer and by Simulink.saveVars Limits for writing variables to MATLAB code Maximum elements in an array: 1000 Maximum levels of nesting: 20 Multidimensional array formatting Use 2-D slice Dimensions for 2-D slice: 1 2 File formatting Maximum characters per line: 76	
	Revert	Apply

In this section...

"Simulink Data Management Defaults Overview" on page 4-40

"Package" on page 4-40

"Maximum elements in an array" on page 4-41

"Maximum levels of nesting" on page 4-41

"Use 2-D slice" on page 4-42

"Dimensions for 2-D slice" on page 4-42

"Maximum characters per line" on page 4-43

Simulink Data Management Defaults Overview

Configure options for setting the default package that will be used in the Model Explorer, Data Object Wizard and Signal Properties. Configure options for using Simulink.saveVars and the Model Explorer to export variables to MATLAB scripts.

Configuration

- Use the drop-down list to set the default package that will be used in the Model Explorer, Data Object Wizard and Signal Properties.
- **2** Use the text boxes to specify new default values to be used when exporting variables to MATLAB scripts:
 - Maximum elements in an array
 - Maximum levels of nesting
 - Dimensions for 2–D slice, if you want to use multidimensional array formatting
 - Maximum characters per line
- **3** Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

Your settings affect the behavior of the Simulink.saveVars function and the Model Explorer **Export** and **Export Selected** context menu items.

Package

Set the default package that will be used in the Model Explorer, Data Object Wizard and Signal Properties.

Settings

Default: Simulink

• Click **Refresh** to load all packages that are on the MATLAB path.

Command-Line Information

Parameter: DefaultDataPackage Type: string Value: any valid value Default: Simulink

Maximum elements in an array

Limits the number of elements saved to a MATLAB script file for an array.

Settings

Default: 1000

• The value must be an integer between 0 and 10000. For a character array, the upper limit is set to twice the value that you specify. If an array is larger than what you specify, then the whole array appears in the MAT-file rather than in the MATLAB script file, generating a warning.

Command-Line Information

Parameter: SaveVarsPreferences Field: MaxNumberElements Type: integer Value: any valid value Default: 1000

Maximum levels of nesting

Limits the number of levels of hierarchy saved to a MATLAB script file for an array.

Settings

Default: 20

• The value must be an integer between 0 and 200. If a structure or cell array is deeper than what you specify, then the whole entity appears in the MAT-file rather than in the MATLAB script file, generating a warning.

Command-Line Information

Parameter: SaveVarsPreferences Field: MaxNumberLevels Type: integer Value: any valid value Default: 20

Use 2-D slice

Specify whether 2-D slice should be enabled for multidimensional array formatting.

Settings

Default: Off

🔽 On

Use 2-D slice to represent arrays of char, logic, or numeric data.

C Off

Do not use 2-D slice to represent arrays of char, logic, or numeric data.

Command-Line Information

Parameter: SaveVarsPreferences Field: Using2dSlice Type: boolean Value: 0 or 1 Default: 0

Dimensions for 2-D slice

Sets two dimensions for 2-D slices that represent n-D (where n is greater than 2) arrays of char, logic, or numeric data.

Settings

Default: [1 2]

- The two integers must be positive.
- The two integers must be less than or equal to the number of dimensions of the n-D array.
- The second integer must be greater than the first.

Command-Line Information

Parameter: SaveVarsPreferences Field: DimensionsFor2dSlice Type: integer array Value: any valid value Default: [1 2]

Maximum characters per line

Sets the text wrap width in the MATLAB script file

Settings

Default: 76

• The value must be an integer between 32 and 256.

Command-Line Information

Parameter: SaveVarsPreferences Field: TextWidth Type: integer Value: any valid value Default: 76

Configuration Defaults Pane

	Configuration Parameters: Configuration Defaults
 Simulink Preferences Display Defaults for New Models Font Defaults for New Models Editor Defaults Data Management Defaults Configuration Defaults Solver Data Import/Export Optimization Diagnostics Hardware Implementation Model Referencing 	Model Configuration Preferences The Configuration Preferences are the template for the Configuration Parameters of newly created models. Any changes made here will be inherited by any new models which are created in this MATLAB session. They will also be saved to a file and loaded into memory automatically at the start of next MATLAB session.
Model Referencing Simulation Target Code Generation HDL Code Generation	Name: Configuration Defaults Description:
	Revert Help Apply

Simulink Configuration Defaults Overview

On the main Configuration Defaults pane you can edit the description of your template configuration set.

Expand the tree under Configuration Defaults to edit the template Configuration Parameters to be used as defaults for new models.

Configuration

1 Expand the tree under Configuration Defaults to edit the template for default Configuration Parameters.

- **2** Edit Configuration Parameters that you want to apply to all new block diagrams.
- **3** Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

These values will be inherited by new block diagrams.

See Also

"Configuration Parameters Dialog Box Overview" on page 1-3

Simulink Mask Editor

- "Mask Editor Overview" on page 5-2
- "Icon & Ports Pane" on page 5-5
- "Parameters & Dialog Pane" on page 5-12
- "Initialization Pane" on page 5-29
- "Documentation Pane" on page 5-33

Mask Editor Overview

A mask is a custom user interface for a block that hides the block's contents, making it appear to the user as an atomic block with its own icon and parameter dialog box. The **Mask Editor**, helps you to:

- Design mask dialog box containing any of the **Parameter**, **Display**, and **Action** dialog controls.
- Promote all or some of the block parameters from underlying blocks.
- Add custom icons to a block mask. The mask icon can change dynamically based on changes in parameter values.
- Add initialization code and initialize variables. Variables initialized by the mask can be passed along to the underlying block parameters.
- Create mask callbacks that run MATLAB code when mask dialog is opened, parameters are changed, you do an update diagram, or simulate a model.
- Provide mask documentation and set mask block type.

For information on creating or editing masks in Simulink, see "Masking".

You can open the **Mask Editor** for a block, in one of following ways:

- To create a new mask, select the block to be masked, and from the **Diagram** menu, select **Mask > Create Mask**. You can also right click the block context menu, and select **Mask > Create Mask**.
- To edit an existing mask, select the masked block, and from the **Diagram** menu, select **Mask > Edit Mask**. You can also right click the block context menu, and select **Mask > Edit Mask**.
- You can also open the **Mask Editor** using the keyboard shortcut **Ctrl+M** (on all platforms, including Macintosh.

The **Mask Editor** opens, looking similar to the figure below. If the block is already masked the mask definition appears on the editor. You can change the mask as needed.

Mask Editor : Product	
Icon & Ports Parameters & Dialog Initialization Documentation	
Options Icon drawing commands	
Block frame	
Visible 🔻	
Icon transparency	
Opaque 🔻	
Icon units	
Autoscale 🔻	
Icon rotation	
Fixed -	
Port rotation	
Default 👻	
Examples of drawing commands	
Command port_label (label specific ports)	•
Syntax port_label('output', 1, 'xy')	4 YK -
Unmask Preview	OK Cancel Help Apply

The **Mask > Look Under Mask** option shows the following:

- For a subsystem block, shows the blocks inside the masked subsystem.
- For regular masked block, shows the built-in block dialog box.
- For linked masked blocks, shows the base mask dialog box.

The **Mask Editor** contains a set of tabbed panes, each of which enables you to define a feature of the mask:

- The **Icon & Ports** pane enables you to define the block icon. See "Icon & Ports Pane" on page 5-5.
- The **Parameters & Dialog** pane enables you to design the mask dialog box. See "Parameters & Dialog Pane" on page 5-12.
- The **Initialization** pane enables you to specify the initialization commands. See "Initialization Pane" on page 5-29.

• The **Documentation** pane enables you to define the mask type, mask description, and the mask help. See "Documentation Pane" on page 5-33.

Following buttons appear on the Mask Editor:

- The **Preview** button applies the changes you made, and opens the mask dialog box.
- The OK button applies the mask settings and closes the Mask Editor.
- The **Cancel** button closes the **Mask Editor** without applying any changes you made to the mask.
- The Help button displays online information about the Mask Editor.
- The **Apply** button applies the mask settings and leaves the **Mask Editor** open.
- The **Unmask** button deletes the mask and closes the **Mask Editor**. To create the mask again, select the block and choose **Mask** > **Create Mask**.

Icon & Ports Pane

In this section...

"About the Icon & Ports Pane" on page 5-5

"Options" on page 5-6

"Icon drawing commands" on page 5-10

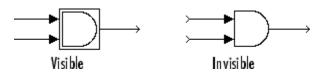
"Examples of drawing commands" on page 5-11

About the Icon & Ports Pane

Use the **Icon & Ports** pane to create block icons that contain descriptive text, state equations, images, and graphics.

Mask Editor	r : Product					
Icon & Ports	Parameters & Dialog	Initialization	Documentation			
Options	Icon drawing	commands				
Block frame						
Visible	•					
Icon transpa	rency					
Opaque	•					
Icon units						
Autoscale	•					
Icon rotation	1					
Fixed	•					
Port rotation	1					
Default						
Evanaples of	drawing commands					
	port label (label				_1	
2			orts)		· · · · ·	×y >
Syntax p	port_label('output', 1, '	y')				
Unmask	Preview			OK Cancel	Help	Apply

The Icon & Ports pane contains the controls described in this section.

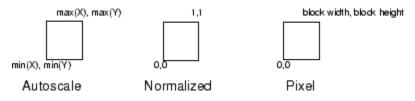

5

Options

These controls allow you to specify the following attributes of the mask icon.

Block frame

The block frame is the rectangle that encloses the block. You can choose to show or hide the frame by setting the **Frame** parameter to **Visible** or **Invisible**. The default is to make the block frame visible. For example, this figure shows visible and invisible block frames for an AND gate block.


Icon transparency

The icon transparency can be set to Opaque or Transparent, based on whether you want to hide or show what is underneath the icon. The default option Opaque hides information such as port labels. This figure shows opaque and transparent icons for an AND gate block. The text is displayed on the transparent icon, and hidden in the opaque icon.

Icon units

This option controls the coordinate system used by the drawing commands. It applies only to the plot and text drawing commands. You can select from among these choices: Autoscale, Normalized, and Pixel.

• Autoscale scales the icon to fit the block frame. When the block is re-sized, the icon is also re-sized. For example, this figure shows the icon drawn using these vectors:

X = [0 2 3 4 9]; Y = [4 6 3 5 8];

The lower-left corner of the block frame is (0,3) and the upper-right corner is (9,8). The range of the *x*-axis is 9 (from 0 to 9), while the range of the *y*-axis is 5 (from 3 to 8).

• Normalized draws the icon within a block frame whose bottom-left corner is (0,0) and whose top-right corner is (1,1). Only X and Y values between 0 and 1 appear. When the block is re-sized, the icon is also re-sized. For example, this figure shows the icon drawn using these vectors:

X = [.0 .2 .3 .4 .9]; Y = [.4 .6 .3 .5 .8];

• Pixel draws the icon with X and Y values expressed in pixels. The icon is not automatically re-sized when the block is re-sized. To force the icon to re-size with the block, define the drawing commands in terms of the block size.

Icon rotation

When the block is rotated or flipped, you can choose whether to rotate or flip the icon or to have it remain fixed in its original orientation. The default is not to rotate the icon. The icon rotation is consistent with block port rotation. This figure shows the results of choosing Fixed and Rotates icon rotation when the AND gate block is rotated. 5

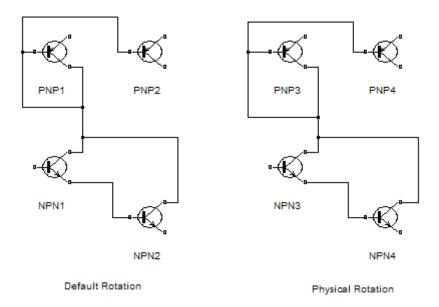
Port rotation

The **Icon & Ports > Port rotation** port option lets you specify a port rotation type for the masked block. The choices are:

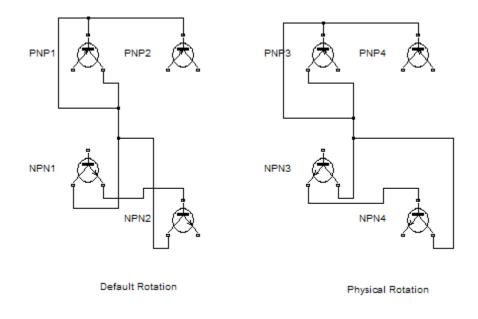
• default

Ports are reordered after a clockwise rotation to maintain a left-to-right port numbering order for ports along the top and bottom of the block and a top-to-bottom port numbering order for ports along the left and right sides of the block.

• physical


Ports rotate with the block without being reordered after a clockwise rotation.

The default rotation option is appropriate for control systems and other modeling applications where block diagrams typically have a top-down and left-right orientation. It simplifies editing of diagrams, by minimizing the need to reconnect blocks after rotations to preserve the standard orientation.


Similarly, the physical rotation option is appropriate for electronic, mechanical, hydraulic, and other modeling applications where blocks represent physical components and lines represent physical connections. The physical rotation option more closely models the behavior of the devices represented (that is, the ports rotate with the block as they would on a physical device). In addition, the option avoids introducing line crossings as the result of rotations, making diagrams easier to read.

For example, the following figure shows two diagrams representing the same transistor circuit. In one, the masked blocks representing transistors use default rotation and in the other, physical rotation.

5-8

Both diagrams avoid line crossings that make diagrams harder to read. The next figure shows the diagrams after a single clockwise rotation.

Note The rotation introduces a line crossing the diagram that uses default rotation but not in the diagram that uses physical rotation. Also that there is no way to edit the diagram with default rotation to remove the line crossing. See "Change a Block Orientation" for more information.

Icon drawing commands

The **Icon drawing commands** text box allows you to enter code that draws the block icon. For a list of the commands, see "Masking".

The drawing commands execute in the order in which they appear in this field. Drawing commands have access to all variables in the mask workspace. If any drawing command cannot successfully execute, the icon displays three question marks.

The drawing commands execute when the block is drawn and when:

• Changes are made and applied in the mask dialog box.

- Changes are made in the Mask Editor.
- Changes are done to the block diagram that affects the block appearance, such as rotating the block.

Examples of drawing commands

This pane demonstrates the use of various icon drawing commands. To determine the syntax of a command, select the command from the **Command** list. An example of the selected command is displayed at the bottom of the pane and the icon produced by the command is displayed to the right of the list.

Examples of drawing commands				
Command	port_label (label specific ports)	9 1.34		
Syntax	port_label('output', 1, 'xy')	×y >		

Parameters & Dialog Pane

In this section...

"About the Parameters & Dialog Pane" on page 5-12

"Controls" on page 5-14

"Dialog box" on page 5-21

"Property editor" on page 5-25

About the Parameters & Dialog Pane

The **Parameters & Dialog** pane enables you to design rich mask dialog boxes using the dialog controls in the **Parameters**, **Display**, and **Action** palettes.

Mask Editor : Gain					
Icon & Ports Parameters & Dialog Initialization Documentation					
Controls	Dialog box			Property editor	
Parameter	Туре	Prompt	Name	Properties	
31 🛃 🗮 🚱	8-11	% <masktype></masktype>	DescGroupVar	Name	ParameterGroup
	A	% <maskdescription></maskdescription>	DescTextVar	Prompt	Simulink:studio:
		Parameters	ParameterGroupVar	Туре	groupbox
				Dialog	_
Display		ig or Click items in left palette		Enable	
	Use	Delete key to remove items	from dialog.	Visible	
				E Layout	
A 🕍				Item location	New row
Action					
0					
Unmask Prev	view			OK Cancel	Help Apply

The Parameters & Dialog pane consists of the following:

• Controls

Controls are elements in a mask dialog box that users can interact with to enter or manipulate data. You can add the following dialog controls to a mask dialog box:

Parameter

Parameters are user inputs that take part in simulation. The **Parameters** palette has a set of parameter dialog controls that you can add to a mask dialog box. See "Parameter" on page 5-14.

- Display

Controls on the **Display** palette allow you to group dialog controls in the mask dialog box and display text and images. See "Display" on page 5-19.

Action

Action controls allow you to perform some actions in the mask dialog box. For example, you can click a hyperlink or a button in the mask dialog box. See "Action" on page 5-20.

• Dialog box

You can drag and drop dialog controls from the palettes to the **Dialog box** to create a mask dialog box. See "Dialog box" on page 5-21.

• Property editor

The **Property editor** allows you to view and set the properties for the **Parameters**, **Display**, and **Action** controls. See "Property editor" on page 5-25.

Properties

Defines basic information on all dialog controls, such as Name, Value, **Prompt**, and **Type**.

Attributes

Defines how a mask dialog control is interpreted. Attributes are related only to parameters.

Dialog

Defines how dialog controls are displayed in the mask dialog box.

- Layout

5

Defines how dialog controls are laid out on the mask dialog box.

Controls

Parameter

The **Parameters** palette contains a set of parameters where your users input data for simulation. Each parameter has a sequence number associated with it. The **Parameter** palette has the following controls:

- **31** Edit parameter: Allows you to enter a parameter value by typing it into the field.
- 🗳 Check box parameter: Accepts a Boolean value.
- **Popup** parameter: Allows you to select a parameter value from a list of possible values.
- Radio button parameter: Allows you to select a parameter value from a list of possible values. All options for a radio button are displayed on the mask dialog.
- DataTypeStr parameter: Enables you to specify a data type for a mask parameter. For more details, see "DataTypeStr parameter" on page 5-15.
- 🗹 Min parameter: Specifies a minimum value for the parameter.
- An ax parameter: Specifies a maximum value for the parameter. If you add a **Max** parameter after a **Min** parameter, it appears in the same row in the mask dialog box.
- Every Promote parameter: Allows you to selectively promote block parameters from underlying blocks to the mask. Click the **Type options** field to open the **Promoted Parameter Selector** dialog box. In this

dialog box, you can select the block parameters that you want to promote. Click $\mathbf{O}\mathbf{K}$ to close it.

• **Promote all**: Allows you to promote all underlying block parameters to the mask. When you promote all parameters, the promote operation deletes parameters that have been promoted previously.

You can set the parameter properties from the "Property editor" on page 5-25.

DataTypeStr parameter. A data type parameter enables you to specify a data type for a mask parameter. A data type parameter is particularly useful when you include a masked block in a user-defined library. For more information, see "Masks on Blocks in User Libraries".

To specify the data type options, click **Type options** in the **Property editor**. It opens the **Type Options Editor** dialog. In the **Type options** dialog box following tabs appear:

- Inherit rules Specify inheritance rules for determining the data types.
- **Built-in types** Specify one or more built-in Simulink data types, such as double or int8.
- **Fixed-point** Specify the scaling and signed modes for a fixed-point data type.
- User-defined Specify a bus or enumerated (enum) data type, or both.
- Associations Associate a data type parameter with a Min, Max, and Edit parameter.

The next figure shows a data type control definition for an **Output Data Type** prompt that allows your masked block users to select any built-in type. To restrict the choices to built-in data types, do not select any check boxes on the **Fixed-point** and **User-defined** tabs.

	he dat				ecify the data type It, User-Defined, A	
Data typ	e opti	ons				
Inherit	rules	Built-in types	Fixed-point	User-defined	Associations	
	dou	ible				
	sinc					
	int8					
	uint	t8				
	int1	.6				E
	uint					
	int3	-				
	uint					
	boo	lean				*

Specifying Inheritance Rules

To specify one or more inheritance rules for the data type control, on the **Inherit rules** tab, select the appropriate check boxes.

	a type(s) for the	e selected para	ameter. To spec	ify the data type o User-Defined, Ass	•
Data type optic	ons				
Inherit rules	Built-in types	Fixed-point	User-defined	Associations	
Inherit	Common Simulink rules Inherit: auto				
🔲 Inherit	🔲 Inherit: Inherit via internal rule 🛄 Inherit: Inherit via back propagation				
🔤 🔲 Inherit	Inherit: Same as input Inherit: Same as first input				
└──					
				ОК	Cancel

By default, the **Inherit rules** tab includes two groups of rules:

- Common Simulink rules
- Advanced Simulink rules

The Common Simulink rules are inheritance rules that apply to many blocks in the Simulink library. The Advanced Simulink rules are inheritance rules that apply to one or only a few Simulink blocks.

If there are any custom inheritance rules registered on the MATLAB search path, then the **Inherit rules** tab also includes a third group of rules: Custom Simulink rules.

Specifying a Fixed-Point Data Type

To specify a fixed-point data type for a parameter:

- 1 Select the parameter on the **Parameter** palette.
- 2 In the Type Options Editor, click the Fixed-point tab.

5

- **3** Select the appropriate scaling and signed mode check boxes. If you do not select a mode, then a user cannot choose a fixed-point data type.
- 4 Click the Associations tab.

Your users can use the association when specifying a fixed-point data type. For a value or value range for a signal, the association can help with the selection of the user select the data type with the best precision.

5 Specify the minimum, maximum, and value for the fixed-point data.

Specifying an Enumerated Data Type

- **1** Select the parameter on the **Parameter** palette.
- 2 In the Type Options Editor , click the User-defined tab.
- 3 Select the Enumerated check box.

Specifying a Bus Data Type

- 1 Select the parameter on the **Parameter** palette.
- 2 In the Type Options Editor, click the User-defined tab.
- **3** Select the **Bus** check box.

If you specify a bus data type as one of the data types that your users can specify in the mask dialog box, then you must add code in the **Initialization** pane. Add code to handle the way that the **DataTypeStr** parameter of an underlying block specifies the data type. For more information about adding code to the **Initialization** pane, see "Initialization Pane" on page 5-29.

To handle cases where the **DataTypeStr** parameter of an underlying block specifies the data type by including the mask parameter as a literal (for example, 'outportdatatype'), add code similar to this code:

```
['Bus: ' blockDTPrmString];
end
```

To handle cases where the **DataTypeStr** parameter of an underlying block specifies the data type by including the mask parameter in the Bus: <object> form, add code similar to this code:

```
maskDTPrmString = get_param(gcb, MaskDTPrmName);
if ~is_a_bus_type(maskDTPrmString)
    blockDTPrmString = get_param(BlockUnderMask, BlockDTPrmName);
    set_param(BlockUnderMask, BlockDTPrmName, ...
        remove_bus_colon_prefix(blockDTPrmString));
end
```

Data Type Evaluation

Simulink enables the **Evaluate** option for data type controls. You cannot change this setting.

Display

Controls on the **Display** palette allow you to group dialog controls in the mask dialog box and display text and images. The **Display** palette has the following controls:

- Group box: Container used for organizing other dialog controls and containers in the mask dialog box.
- **Panel**: Container for a group of dialog controls. You use a**Panel** for logical grouping of dialog controls.
- Tab: Tab is used for grouping dialog controls in the mask dialog box. A tab is contained within a tab container. A tab container can have multiple tabs.

- A Text: Text displayed in the mask dialog box.
- 📓 Image: Image displayed in the mask dialog box.

You can set or view the properties for containers from the "Property editor" on page 5-25.

When you create a new mask, the description group box contains the following two rows that are added to the **Dialog box**.

Prompt	Name	Description
% <masktype></masktype>	DescGroupVar	Mask type specifies a title for the group box. The text that you enter in the Mask type field is mapped to % <masktype>.</masktype>
% <maskdescriptio< td=""><td>nĐescTextVar</td><td>Mask description specifies information related to the mask. The text you enter in the Mask description field is mapped to %<maskdescription>.</maskdescription></td></maskdescriptio<>	nĐescTextVar	Mask description specifies information related to the mask. The text you enter in the Mask description field is mapped to % <maskdescription>.</maskdescription>

Action

These controls allow you to perform some actions in the mask dialog box. For example, click on a hyperlink or button on the mask dialog box. The **Action** palette has the following controls:

- *A* Hyperlink: Hyperlink text displayed on the mask dialog box.
- Rutton: Button controls on the mask dialog box. You can program button for specific actions.

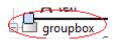
You can set the properties for **Action** controls from the "Property editor" on page 5-25.

5-20

Dialog box

You can build a hierarchy of dialog controls by dragging them from a palette to the **Dialog box**. You can also double-click dialog controls on the palettes to add them to the **Dialog box**. You can have maximum of 32 levels of hierarchy in the **Dialog box**.

The Dialog box displays three fields: Type, Prompt, and Name.


- The **Type** field shows the type of the dialog control and cannot be edited. It also displays a sequence number for parameter dialog controls.
- The **Prompt** field shows the prompt text for the dialog control. For **label** and **hyperlink**, a default prompt string is provided.
- The **Name** field is auto-populated and uniquely identifies the dialog controls.

The **Parameter** controls are displayed in light blue background whereas the **Display** and **Action** controls are displayed in white background on the **Dialog box**.

Moving dialog controls in the Dialog box

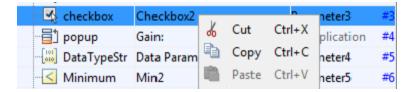
You can move dialog controls up and down in the hierarchy using drag and drop. When you drag a control, a cue line indicates the level in the hierarchy. Based on the type of dialog control, you can drag and drop controls as indicated:

- Drag and drop on the container dialog control in the Dialog box
 - **Drop before it**: Adds the dialog control as a sibling before the current dialog control.

• Drop on it: Adds to the container as a child at the end.

• **Drop after it**: Adds the dialog control as a sibling after the current dialog control.

- Drag and drop on the non-container dialog control in the Dialog box
 - Drop before it: Adds the dialog control before the current dialog control.


• Drop after it: Adds the dialog control after the current dialog control.

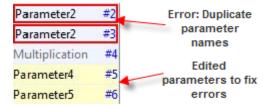
- Drag and drop into Dialog box blank area
 - The element is added to the root level node.

Cut, Copy, and Paste Controls

You can cut, copy, and paste dialog controls on the **Dialog box** using the context menu.

Delete nodes

Right-click the control that you want to delete in the Dialog box. Select,


Delete from the context menu. For example, to delete a **Check box** dialog control, right-click and select **Delete**:

40	Cut	Ctrl+X
Ð	Сору	Ctrl+C
•	Paste	Ctrl+V
×	Delete	

You can also use the **Delete** menu option to delete a dialog control.

Error Display

If you have errors in parameters names, such as, duplicate, invalid parameter names, or empty names, the mask editor displays the parameter names in red outline. When you edit the parameters to fix errors, the modified fields are identified by a yellow background.

Dialog box				
Type Prompt		Name		
	% <masktype></masktype>	DescGroupVar		
A	% <maskdescription></maskdescription>	DescTextVar		
	G1	ParameterGroupVar		
30 #1	edit parameter	Parameter1 2		
<mark>311 #2</mark>	edit parameter	parameter1		
<mark>311 #3</mark>	edit parameter	a		
A	text control	А ^{За}		
e	hyperlink control	control3 4		
ð	hyperlink control	Control3		
30 #4	edit parameter	b 3b		
ð	hyperlink control	b		
	G2	Container		
<mark></mark>] #5	Errors	23		
^l <mark>⊟</mark>] #6	Following names	are duplicate:		
Drag o Use De				
Use De	e parame			
	ОК			

- 1 Duplicate Parameter, Display, and Action control names are not allowed.
- **2 Parameter** names must be unique and are case insensitive. Names varying only in lowercase and uppercase letters, are treated as duplicates. For example, Parameter1 and parameter1 are not allowed.
- **3 Parameter**, **Display**, and **Action** control names can be same as long as different lowercase and uppercase characters are used. For example, while a and A are allowed, b and b are not allowed.

4 Action and Display control names are case sensitive. For example, while Control3 and control3 are allowed, control3 and control3 are not allowed.

Property editor

The **Property editor** allows you to view and set the properties for **Parameter**, **Display**, and **Action** dialog controls. The **Property editor** for **Parameter** is shown below:

Property editor				
Properties				
Name	Parameter7			
Value	0			
Prompt				
Туре	edit 🔹			
Attributes				
Evaluate				
Tunable				
Read only				
Hidden				
Never save				
Dialog				
Enable				
Visible				
Callback				
Layout				
Item location	New row 👻			
Prompt location	Тор 💌			

Properties

You can set the following properties for **Parameter**, **Action**, and **Display** dialog controls:

5

• Name

Uniquely identifies the dialog control in the mask dialog box. The **Name** property must be set for all dialog controls.

• Value

Value of the **Parameter** dialog control. The **Value** property applies only to the **Parameter** dialog controls.

• Prompt

Label text that identifies the parameters in a mask dialog box. The **Prompt** property applies to all dialog controls except **Panel** and **Image** dialog control.

• Type

Type of the dialog control. You can change the **Type** field only for the **Parameter** dialog controls.

• Type options

The **Type options** property allows you to set specific **Parameter** properties. The **Type options** property applies to the **Popup**, **Radio button**, **DataTypeStr**, and **Promoted** parameters.

• File path

The **File path** property stores the location of the image file. The **File path** property applies only for **Image** and **Button** dialog controls.

• Word wrap

The **Word wrap** property enables word wrapping for long text. The **Word wrap** property applies only for **Text** dialog control.

Attributes

You can set the following attributes for **Parameter** and **Action** dialog controls:

• Evaluate

Simulink uses the value of a mask parameter as the user enters it in the mask dialog box, or it can evaluate what your user specify and use as the result of the evaluation. Select the **Evaluate** option for a parameter to

specify parameter evaluation (the default). Clear the option to suppress evaluation.

• Tunable

By default, your masked block users can change a mask parameter value during simulation. Clear the **Tunable** option to prohibit changing the parameter value during simulation. If the masked block does not support parameter tuning, Simulink ignores the **Tunable** option setting of a mask parameter. For information about parameter tuning and the blocks that support it, see "Tunable Parameters".

• Read only

Indicates that the parameter cannot be modified.

• Hidden

Indicates that the parameter must not be displayed in the mask dialog box.

• Never save

Indicates that the parameter value never gets saved in the model file.

Dialog box

You can set the following **Dialog** properties for the **Parameter** and **Display** dialog controls:

• Enable

Clearing this option makes the selected parameter prompt unavailable and disables its edit control. Your masked block users cannot set the value of the parameter.

• Visible

The selected parameter appears in the mask dialog box only if this option is selected.

• Callback

MATLAB code that you want Simulink to execute when a user applies a change to the selected parameter.

Layout

You can set the location and alignment of the dialog controls in the mask dialog box as follows:

• Item location

Allows you to set the location for the dialog control to appear in the current row or a new row.

• Prompt location

Allows you to set the prompt location for the dialog control on either the top or to the left of the dialog control.

You cannot set the **Prompt location** property for **Check box**, **DataTypeStr**, and **Radiobutton**.

Initialization Pane

In this section...

"About the Initialization Pane" on page 5-29

"Dialog variables" on page 5-31

"Initialization commands" on page 5-31

"Allow library block to modify its contents" on page 5-32

"Rules for Initialization commands" on page 5-32

About the Initialization Pane

The **Initialization** pane allows you to enter MATLAB commands that initialize the masked block.

Mask Editor : Mu	🖞 Mask Editor : Mu 🕞 🔲 💌					
Icon & Ports Parameters & Dialog	Initialization Documentation					
Dialog variables	initialization commands					
	Allow library block to modify its contents					
Unmask Preview		OK Cancel Help Apply				

When you open a model, Simulink locates the visible masked blocks that reside at the top level of the model or in an open subsystem. Simulink only executes the initialization commands for these visible masked blocks if they meet either of the following conditions:

• The masked block has icon drawing commands.

Note Simulink does not initialize masked blocks that do not have icon drawing commands, even if they have initialization commands.

• The masked block belongs to a library and has the **Allow library block** to modify its contents enabled.

Initialization commands for all masked blocks in a model run when you:

- Update the diagram
- Start simulation
- Start code generation

Initialization commands for an individual masked block run when you:

- Change any of the mask parameters that define the mask, such as MaskDisplay and MaskInitialization, by using the Mask Editor or the set_param command.
- Rotate or flip the masked block, if the icon depends on the initialization commands.
- Cause the icon to be drawn or redrawn, and the icon drawing depends on initialization code.
- Change the value of a mask parameter by using the block dialog box or the set_param command.
- Copy the masked block within the same model or between different models.

The Initialization pane contains the controls described in this section.

Dialog variables

The **Dialog variables** list displays the names of the dialog controls and associated mask parameters, which are defined in the **Parameters & Dialog** pane. You can also use the list to change the names of mask parameters. To change a name, double-click the name in the list. An edit field containing the existing name appears. Edit the existing name and click **Enter** or click outside the edit field to confirm your changes.

Initialization commands

Enter the initialization commands in this field. You can enter any valid MATLAB expression, consisting of MATLAB functions and scripts, operators, and variables defined in the mask workspace. Initialization commands run in the mask workspace, not the base workspace.

Allow library block to modify its contents

This check box is enabled only if the masked subsystem resides in a library. Checking this option allows the block's initialization code to modify the contents of the masked subsystem by adding or deleting blocks and setting the parameters of those blocks. Otherwise, an error is generated when a masked library block tries to modify its contents in any way.

Rules for Initialization commands

Following rules apply for mask initialization commands:

- Do not use initialization code to create mask dialogs whose appearance or control settings change depending on changes made to other control settings. Instead, use the mask callbacks provided specifically for this purpose.
- Avoid prefacing variable names in initialization commands with MaskParam_L_ and MaskParam_M_. These specific prefixes are reserved for use with internal variable names.
- Avoid using set_param commands to set parameters of blocks residing in masked subsystems that reside in the masked subsystem being initialized. See "Setting Nested Masked Block Parameters" for details.

Documentation Pane

In this section...

"About the Documentation Pane" on page 5-33

"Mask type" on page 5-34

"Mask description" on page 5-34

"Mask help" on page 5-34

About the Documentation Pane

The **Documentation** pane enables you to define or modify the type, description, and help text for a masked block.

Mask Editor	: Fcn						• 💌
Icon & Ports	Parameters & Dialog	Initialization	Documentation				
Mask type						17	
Mask descrip	otion						
· · ·							
Mask help							
L							
Unmask	Preview			ОК	Cancel	Help	Apply

5

Mask type

The mask type is a block classification that appears in the mask dialog box and on all **Mask Editor** panes for the block. When Simulink displays a mask dialog box, it suffixes (mask) to the mask type. To define the mask type, enter it in the **Mask type** field. The text can contain any valid MATLAB character, but cannot contain line breaks.

Mask description

The mask description is summary help text that describe the block's purpose or function. The description appears in the mask dialog box under the mask type. To define the mask description, enter it in the **Mask description** field. The text can contain any legal MATLAB character. Simulink automatically wraps long lines. You can force line breaks by using the **Return** key.

Mask help

The Online Help for a masked block provides information in addition to that provided by the **Mask type** and **Mask description** fields. This information appears in a separate window when the masked block user clicks the **Help** button on the mask dialog box. To define the mask help, enter one of the following in the **Mask help** field.

- URL specification
- web or eval command
- Literal or HTML text

Provide an URL

If the first line of the **Mask help** field is an URL, Simulink passes the URL to your default web browser. The URL can begin with http:, www:, file:, ftp:, or mailto:. Examples:

```
http://www.mathworks.com
file:///c:/mydir/helpdoc.html
```

Once the browser is active, MATLAB and Simulink have no further control over its actions.

Provide a web Command

If the first line of the **Mask help** field is a web command, Simulink passes the command to MATLAB, which displays the specified file in the MATLAB Online Help browser. Example:

```
web([docroot '/MyBlockDoc/' get_param(gcb,'MaskType') '.html'])
web('hello.html', '-helpbrowser')
```

See the MATLAB web command documentation for details. A web command used for mask help cannot return values.

Provide an eval Command

If the first line of the **Mask help** field is an **eval** command, Simulink passes the command to MATLAB, which performs the specified evaluation. Example:

```
eval('!Word My_Spec.doc')
```

See MATLAB eval command documentation for details. An eval command used for mask help cannot return values.

Provide Literal or HTML Text

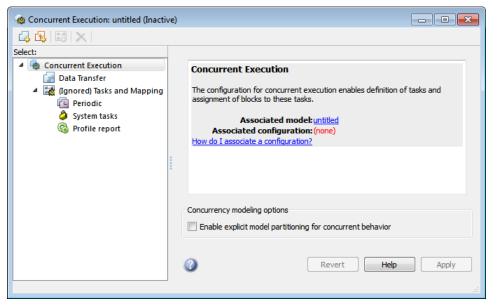
If the first line of the **Mask help** field is not an URL, or a web or eval command, Simulink displays the text in the MATLAB Online Help browser under a heading that is the value of the **Mask type** field. The text can contain any legal MATLAB character, line breaks, and any standard HTML tag, including tags like img that display images.

Simulink first copies the text to a temporary folder, then displays the text using the web command. If you want the text to display an image, you can provide a URL path to the image file, or you can place the image file in the temporary folder. Use tempdir to find the temporary folder that Simulink uses for your system.

6

Concurrent Execution Window

- "Concurrent Execution Window: Main Pane" on page 6-2
- "Data Transfer Pane" on page 6-6
- "Periodic Pane" on page 6-11
- "Task Pane" on page 6-13
- "Interrupt Pane" on page 6-17
- "System Tasks Pane" on page 6-23
- "System Task Pane" on page 6-24
- "System Interrupt Pane" on page 6-28
- "Profile Report Pane" on page 6-31


Concurrent Execution Window: Main Pane

In this section ...

"Concurrent Execution Window Overview" on page 6-2

"Enable explicit model partitioning for concurrent behavior" on page 6-4

Concurrent Execution Window Overview

The Concurrent Execution window comprises the following panes:

• Concurrent Execution (root level)

Display general information for the model, including model name, configuration set name, and status of configuration set.

• Data Transfer

Configure data transfer methods between tasks.

• Tasks and Mapping

Map blocks to tasks.

• Periodic

Name periodic tasks.

• Task

Define and configure a periodic task that the target operating system executes.

• Interrupt

Define aperiodic event handler that executes in response to hardware or software interrupts.

• System Task Pane

Display system tasks.

• System Task

Display periodic system tasks.

• System Interrupt

Display interrupt system tasks.

• "Profile Report Pane" on page 6-31

Generate and examine profile report for model.

Click items in the tree to select panes.

Configuration

This pane appears only if you select **Allow tasks to execute concurrently on target** in the Model Explorer dialog box.

1 In the Model Hierarchy pane, right-click the active configuration and select **Show Concurrent Execution options**.

The Dialog pane displays the Solver parameters, which now contains a **Concurrent execution options** section.

- **2** Select Allow tasks to execute concurrently on target.
- **3** Click **Configure Tasks**.

The concurrent execution dialog box is displayed.

See Also

"About Configuring Models for Concurrent Execution"

Enable explicit model partitioning for concurrent behavior

Specify whether you want to manually map tasks (explicit mapping) or use the rate-based tasks.

Settings

Default: On

🗹 On

Enable manual mapping of tasks to blocks.

C Off

Allow implicit rate-based tasks.

Command-Line Information

Parameter: ExplicitPartitioning Type: string Value: 'on' | 'off' Default: 'off'

See Also

"About Configuring Models for Concurrent Execution"

Dependencies

Selecting this check box:

• Allows custom task-to-block mappings. The node name changes to **Tasks and Mapping** label and the icon changes.

• Disables the Automatically handle rate transition for data transfer check box on the Data Transfer pane.

Clearing this check box

- Causes the software to ignore the task-to-block mappings. The node name changes to (Ignored) Tasks and Mapping.
- Enables the Automatically handle rate transition for data transfer check box on the Data Transfer pane.

Data Transfer Pane

In this section...

"Data Transfer Pane Overview" on page 6-6

"Periodic signals" on page 6-7

"Continuous signals" on page 6-8

"Extrapolation method" on page 6-9

"Automatically handle rate transition for data transfer" on page 6-9

Data Transfer Pane Overview

Data Transfer Options					
Defaults					
Periodic signals:	Ensure deterministic transfer (maximum delay) 🔻				
Continuous signals:	Ensure deterministic transfer (minimum delay) 🔹				
Extrapolation method:	None				
Automatically handle rate transition for data transfer					

Edit options to define data transfer between tasks.

See Also

Periodic signals

Select the data transfer mode of synchronous signals.

Settings

Default: Ensure deterministic transfer (maximum delay)

Ensure deterministic transfer (maximum delay) Ensure maximum capacity during data transfer.

Ensure data integrity only Ensure maximum data integrity during data transfer.

Dependency

This parameter is enabled if the **Enable explicit task mapping to override implicit rate-based tasks** check box on the Concurrent Execution pane is selected.

Command-Line Information

 $See \ Simulink. Software Target. Task Configuration.$

See Also

Continuous signals

Select the data transfer mode of continuous signals.

Settings

Default: Ensure deterministic transfer (maximum delay)

Ensure deterministic transfer (maximum delay) Ensure maximum capacity during data transfer.

Ensure data integrity only Ensure maximum data integrity during data transfer.

Dependency

This parameter is enabled if the **Enable explicit task mapping to override implicit rate-based tasks** check box on the Concurrent Execution pane is cleared.

Command-Line Information

 $See \ Simulink. Software Target. Task Configuration.$

See Also

Extrapolation method

Select the extrapolation method of data transfer to configure continuous-to-continuous task transitions.

Settings

Default: None

None

Do not use any extrapolation method for task transitions.

Zero Order Hold

User zero order hold extrapolation method for task transitions.

Linear

User linear extrapolation method for task transitions.

Quadratic

User quadratic extrapolation method for task transitions.

Dependency

This parameter is enabled if the **Enable explicit task mapping to override implicit rate-based tasks** check box on the Concurrent Execution pane is selected.

Command-Line Information

See Simulink.SoftwareTarget.TaskConfiguration.

See Also

"About Configuring Models for Concurrent Execution"

Automatically handle rate transition for data transfer

Select the extrapolation method of data transfer to configure continuous-to-continuous task transitions.

Settings

Default: Off

🔽 On

Enable the software to handle rate transitions for data transfers automatically, without user intervention.

C Off

Disable the software from handling rate transitions for data transfers automatically.

Dependencies

This parameter is enabled if the Concurrent Execution pane **Enable explicit** task mapping to override implicit rate-based tasks check box is cleared.

Command-Line Information

See Simulink.SoftwareTarget.TaskConfiguration.

See Also

Periodic Pane

In this section...

"Periodic Pane Overview" on page 6-11

"Name" on page 6-12

Periodic Pane Overview

Periodic Trigger: Periodic		
Propert	ies	
Name:	Periodic	

Configure periodic (synchronous) tasks.

See Also

Name

Specify a unique name for the periodic task trigger configuration.

Settings

Default: Periodic

• Alternatively, enter a unique string to identify the periodic task trigger configuration. This value must be a valid MATLAB variable.

Command-Line Information

 $See \ Simulink. Software Target. Periodic Trigger.$

See Also

Task Pane

In this section...

"Task Pane Overview" on page 6-13

"Name" on page 6-14

"Period" on page 6-15

"Color" on page 6-16

Task Pane Overview

Specify concurrent execution tasks. You can add tasks for periodic and interrupt-driven (aperiodic) tasks.

See Also

Name

Specify a unique name for the task configuration.

Settings

Default: Task

• Alternatively, enter a unique string to identify the periodic task trigger configuration. This value must a valid MATLAB variable.

Command-Line Information

See Simulink.SoftwareTarget.Task.

See Also

Period

Specify the period for the task.

Settings

Default: 1

Minimum: 0

• Enter a positive real or ratio value.

Tip

You can parameterize this value by using MATLAB expression strings as values.

Command-Line Information

See Simulink.SoftwareTarget.Task.

See Also

Color

Specify a color for the task icon.

Settings

Default: Blue

• Click the color picker icon to select a color for the task icon.

Tips

The task icon appears on the top left of the Model block. It indicates the task to which the Model block is assigned.

- As you add a task, the software automatically assigns a color to the task icon, up to six colors. When the current list of colors is exhausted, the software reassigns previously used colors to the new tasks, starting with the first color assigned.
- If you select a different color for an icon and then use the software to automatically assign colors, the software assigns a preselected color.

Command-Line Information

See Simulink.SoftwareTarget.Task.

See Also

Interrupt Pane

In this section...

"Interrupt Pane Overview" on page 6-17

"Name" on page 6-18

"Color" on page 6-19

"Aperiodic trigger source" on page 6-20

"Signal number [2,SIGRTMAX-SIGRTMIN-1]" on page 6-21

```
"Event name" on page 6-22
```

Interrupt Pane Overview

Configure interrupt-driven (aperiodic) tasks.

Aperi	Aperiodic Trigger: Interrupt			
Prop	perti	ies		
Nan	ne:	Interrupt		
Cold	or:	<u>&</u> -		
Cod	le ge	eneration propertie	s	
Аре	erioc	dic trigger source:	Posix Signal (Linu:	x/VxWorks 6.x) 🔹
Sig	nalı	number [2,SIGRTM	AX-SIGRTMIN-1]:	2

See Also

Name

Specify a unique name for the interrupt-driven task configuration.

Settings

Default: Interrupt

• Enter a unique string to identify the interrupt-driven task configuration. This value must a valid MATLAB variable.

Command-Line Information

 $See \ Simulink. Software Target. A periodic Trigger.$

See Also

Color

Specify a color for the interrupt icon.

Settings

Default: Blue

• Click the color picker icon to select a color for the interrupt icon.

Tips

The interrupt icon appears on the top left of the Model block. It indicates the task to which the Model block is assigned.

- As you add an interrupt, the software automatically assigns a color to the interrupt icon, up to six colors. When the current list of colors is exhausted, the software reassigns previously used colors to the new interrupts, starting with the first color assigned.
- If you select a different color for an icon and then use the software to automatically assign colors, the software assigns a preselected color.

Command-Line Information

See Simulink.SoftwareTarget.AperiodicTrigger.

See Also

Aperiodic trigger source

Specify the trigger source for the interrupt-driven task.

Settings

Default: Posix Signal (Linux/VxWorks 6.x)

Posix Signal (Linux/VxWorks 6.x)

For Linux or VxWorks[®] systems, select Posix Signal (Linux/VxWorks 6.x).

Event (Windows)

For Windows systems, select Event (Windows).

Dependencies

This parameter enables either **Signal number** [2,SIGRTMAX-SIGRTMIN-1] or Event name.

• Selecting Posix Signal (Linux/VxWorks 6.x) enables the following parameter:

Signal number [2,SIGRTMAX-SIGRTMIN-1]

• Selecting Event (Windows) enables the following parameter:

Event name

Command-Line Information

See Simulink.SoftwareTarget.PosixSignalHandler.

See Also

Signal number [2,SIGRTMAX-SIGRTMIN-1]

Enter the $POSIX^{(\!R\!)}$ signal number as the trigger source.

Settings

Default: 2

Minimum: 2

Maximum: SIGRTMAX-SIGRTMIN-1

• Enter the POSIX signal number as the trigger source.

Dependencies

Aperiodic trigger source > Posix signal (Linux/VxWorks 6.x) enables this parameter.

Command-Line Information

See Simulink.SoftwareTarget.PosixSignalHandler.

See Also

Event name

Enter the name of the event as the trigger source.

Settings

Default: ERTDefaultEvent

• Change ERTDefaultEvent to the actual trigger source event.

Dependencies

Aperiodic trigger source > Event (Windows) enables this parameter.

Command-Line Information

Simulink. Software Target. Windows Event Handler

See Also

System Tasks Pane

System Tasks Pane Overview

Display system tasks.

s	System tasks		
	Autogenerate tasks and mapping(*invokes update diagram)		

See Also

System Task Pane

In this section...

"System Task Pane Overview" on page 6-24

"Name" on page 6-25

"Period" on page 6-26

"Color" on page 6-27

System Task Pane Overview

Display periodic system tasks.

Task: Dis	Task: Discrete1		
Properti	es		
Name:	Discrete 1		
Period:	0.1		
Color:	<u> 3</u>		

See Also

Name

Specify a default name for the periodic system task configuration.

Settings

Default: DiscreteN

Tip

To change the name, period, or color of this task, right-click the task node and select **Convert to editable periodic task**.

Command-Line Information

 $See \ Simulink. Software Target. Task.$

See Also

Period

Specify the period for the task.

Settings

Default: 1

Minimum: 0

• Enter a positive real or ratio value.

Tip

• To change the name, period, or color of this task, right-click the task node and select **Convert to editable periodic task**.

Command-Line Information

See Simulink.SoftwareTarget.Task.

See Also

Color

Specify the outline color for the task icon.

Settings

Default: Blue

Tips

The task icon appears on the top left of the Model block. It indicates the task the Model block is assigned to.

• To change the name, period, or color of this task, right-click the task node and select **Convert to editable periodic task**.

See Also

System Interrupt Pane

In this section...

"System Interrupt Pane Overview" on page 6-28

"Name" on page 6-29

"Color" on page 6-30

System Interrupt Pane Overview

Display interrupt system tasks.

Aperiodic Trigger: Asynchronous Properties Name: Asynchronous Color:

See Also

Name

Specify a default name for the interrupt system task.

Settings

Default: Asynchronous

Tip

To change the name or color of this task, right-click the task node and select **Convert to editable aperiodic trigger**.

Command-Line Information

 $See \ Simulink. Software Target. Task.$

See Also

Color

Specify the outline color for the task icon.

Tips

The task icon appears on the top left of the Model block. It indicates the task the Model block is assigned to.

• To change the name or color of this task, right-click the task node and select **Convert to editable aperiodic task**.

See Also

Profile Report Pane

In this section...

"Profile Report Pane Overview" on page 6-31

"Number of time steps" on page 6-32

Profile Report Pane Overview

Generate and examine profile report for model.

P	Profile Report				
	Number of time steps:	100			
	Generate task execution profile report (*invokes build and execution)				
-	Cannot find an associated profile report in the current folder. Generate one using the button above.				

See Also

Number of time steps

Specify number of time steps to generate profile report.

Settings

Default: 100

• Enter the number of time steps to collect data.

Command-Line Information

See Simulink.SoftwareTarget.profile.

See Also

7

Simulink Simulation Stepper

Simulation Stepping Options

🚹 Simulation Stepping Options: vdp	×
Enable stepping back	
Maximum number of saved back steps 10]
Interval between stored back steps 10	steps
Move back/forward by	steps
Pause simulation when time reaches 5]
OK Cancel Help	Apply

In this section...

```
"Simulation Stepping Options Overview" on page 7-2
```

"Enable stepping back" on page 7-4

"Maximum number of saved back steps" on page 7-5 $\,$

"Interval between stored back steps" on page 7-6

"Move back/forward by" on page 7-7

"Pause simulation when time reaches" on page 7-8

Simulation Stepping Options Overview

Use the Simulation Stepping Options dialog box to configure the time and the manner of manually stepping through a simulation.

Configuration

This pane appears when you select **Simulation > Stepping Options**.

- 1 Set the time at which you wish to pause the simulation
- **2** To step backwards through a simulation, select **Enable stepping back** and specify the total number and frequency of snapshots.
- **3** Specify the increment of steps by which the simulation steps either forward or backwards.
- 4 To pause simulation at a particular time, select Pause simulation when time reaches check box and enter the pause time.

Tips

- To start the Simulation Stepping Options dialog box from the Simulink toolbar, click 4.
- You can change the value while the simulation is running or paused.

See Also

• "Simulation Stepping"

Enable stepping back

Enable stepping back.

Settings

Default: Off

🔽 On

Enable stepping back.

C Off

Disable stepping back.

Tip

Simulation stepping (forward and back) is available only for Normal and Accelerator modes.

Dependencies

This parameter enables the **Maximum number of saved back steps** and **Interval between stored back steps** parameters.

See Also

"Simulation Stepping"

Maximum number of saved back steps

Enter the maximum number of snapshots that the software can capture. A snapshot at a particular simulation time captures all the information required to continue a simulation from that point.

Settings

Default: 10

Minimum: 0

Dependencies

Enable stepping back enables this parameter and the **Interval between stored back steps** parameter.

See Also

- "Simulation Stepping"
- "Simulation Snapshots"

7

Interval between stored back steps

Enter the number of major time steps to take between capturing simulation snapshots.

Settings

Default: 10

Minimum: 1

- "Simulation Stepping"
- "Simulation Snapshots"

Tip

The number of steps to skip between snapshots. This parameter enables you to save snapshots of simulation state for stepping backward at periodic intervals, such as every three steps forward. This interval is independent of the number of steps taken in either the forward or backward direction. Because taking simulation snapshots affects simulation speed, saving snapshots less often can improve simulation speed.

Dependencies

Enable stepping back enables this parameter and the **Maximum number** of saved back steps parameter.

See Also

- "Simulation Stepping"
- "Simulation Snapshots"

Move back/forward by

Enter the number of major time steps for a single call to step forward or back.

Settings

Default: 1

Minimum: 1

Tip

The maximum number of steps, or snapshots, to capture while simulating forward. The greater the number, the more memory the simulation occupies and the longer the simulation takes to run.

See Also

- "Simulation Stepping"
- "Simulation Snapshots"

7

Pause simulation when time reaches

Pause simulation when time reaches the specified time(s).

Settings

Default: Off

🔽 On

Enable stepping back.

C Off

Disable stepping back.

Selecting this check box enables the associated text box. In this text box, enter the time at which simulation is to be paused.

Default: 5

Minimum: 0

• This value can be a scalar value, or a vector of times. Specifying a vector of pause times is equivalent to specifying multiple separate pause times for a single simulation.

You can specify pause times as variables in the model or MATLAB workspace.

• The stepper does not alter the course of the simulation. As a consequence, specifying a value for a pause time does not necessarily pause the simulation at exactly that time. Instead, the simulation pauses at whatever simulation time is closest to the requested pause time, without going below it.

See Also

"Simulation Stepping"

Simulink Variant Manager

- "Variant Manager Overview" on page 8-2
- "Variant Configuration Data Pane" on page 8-4
- "Model Hierarchy Pane" on page 8-8
- "Validation Results Pane" on page 8-11

Variant Manager Overview

Using Variant Manager you can:

- Explore, visualize, and manipulate variant hierarchy.
- Define, validate, and visualize variant configurations.
- Define and validate constraints for the model.
- Specify one of the variant configurations as default active configuration.
- Control variables can be set to either strings or Simulink.Parameter objects.
- Associate Simulink.VariantConfigurationData object with model.
- Validate a variant configuration or model without doing an update diagram.

For more information on managing variants using **Variant Manager**, see "Manage Variants Using Variant Manager".

Open Variant Manager in one of the following ways:

- From the model editor, click View > Variant Manager.
- From the **Block Parameters** dialog box of any of the variant blocks in the model, click **Open block in Variant Manager**.

Note You can open the **Block Parameter** dialog box from **Diagram > Block Parameters (Subsystem)** or using the context menu for the block.

• From the **Variant** menu available for variant blocks, right-click and select the option **Variant > Open in Variant Manager**.

Variant Manager contains a set of panes, each of which enables you to do a different task.

- The **Variant configuration data** pane enables you to define a set of variant configurations, constraints and save them as variant configuration data object. See "Variant Configuration Data Pane" on page 8-4.
- The **Model hierarchy** pane enables you to visualize the variant hierarchy. See "Model Hierarchy Pane" on page 8-8.
- The **Validation results** pane displays information on the source of control variables and validation errors. See "Validation Results Pane" on page 8-11.

Variant Configuration Data Pane

In this section ...

"Name" on page 8-4

"Configurations" on page 8-4

"Constraints" on page 8-6

Use the **Variant Configuration Data** pane to create configurations, define control variables, submodel configurations, and constraints. The configurations and associated data are stored in a variant configuration data object. The **Variant configuration data** pane contains the controls described in this section.

Name

The Name field allows you to enter the name of the variant configuration

data object. Use **Save** to save the variant configuration data object to the workspace.

Name	vcd 🔻	
------	-------	--

Configurations

The **Configurations** tab is used to define variant configurations. The **Configurations** tab has buttons that allow you to add, delete, copy, or set a specific configuration as default. The buttons are listed in the table below:

Button	Description	
-	Add new variant configuration	
※	Delete a variant configuration	

Button	Description	
	Add a copy of a variant configuration	
	Set/Clear a configuration as default active configuration	

Description

The **Description** field allows you to provide a description for the selected variant configuration.

Control Variables

For a selected variant configuration, we can define control variables in the **Control Variables** tab.

The **Control Variables** tab provides the following buttons that allow you to add, delete, copy, toggle data type, and import control variables from the workspace. Following table lists the buttons:

Button	Description	
+	Add new control variable	
※	Delete a control variable	
Add a copy of a control variable		
Toggle type of a control variable Control variable can be either a string or aSimulink.Parameter object.		

Button	Description
	Edit control variables of type Simulink.Parameter
	Import control variables from base workspace

Submodel Configurations

Define variant configuration to be used for a given submodel from the **Submodel Configurations** tab. You can add a new sub model configuration

using the button and delete sub model configuration using the let

Configuration: Configuration				
Description Control Variables		Submodel Configurations		
Submodel			Configuration	
model			config	

Constraints

The **Constraints** tab allows you to specify the model level constraints. You can add a new constraint using the button and delete constraints using the button.

Name

Name of the constraint.

Condition

Condition expression for the constraint that must be satisfied by all variant configurations.

Description

Description for the specific constraint.

Model Hierarchy Pane

In this section ...

"Refresh and Validate Configuration" on page 8-8

"Show" on page 8-9

"Navigate Hierarchy" on page 8-9

"Hierarchy Table" on page 8-9

You can visualize and explore the variant hierarchy of a model and edit the properties of variant blocks, their choices, and variant objects from the **Model hierarchy** pane. The **Model hierarchy** pane displays the **Name**, **Submodel Configuration**, **Variant Control**, and associated **Conditions** of variant objects used as variant controls.

You can browse the hierarchy using icons on the **Model hierarchy** Pane. The controls on the **Model hierarchy** pane allow you to do the following:

- Refresh and validate hierarchy.
- Display only variant or all hierarchical blocks.
- Navigate between active, invalid, and overridden variant choices.

Refresh and Validate Configuration

Refresh

When you make modifications to a variant configuration which affect the validation results, like adding new control variables, modifying the variant control, renaming a variant configuration or deleting a configuration, you

must explicitly refresh and validate using the button.

Validate

Selecting a configuration from the Validate LinInterExp

drop down automatically validates the configuration and refreshes the hierarchy. The option **(Using base workspace)** uses variables from the base

workspace to validate the configuration, while other options listed in the drop down use the variables from the respective configurations for validation.

Show

You can selectively display blocks in the variant hierarchy. You can select one of the following options:

- **Model and variant blocks**: When you select this option, only the model reference and variant blocks are displayed.
- All hierarchical blocks: When you select this option, all hierarchical blocks in the model are displayed.

Navigate Hierarchy

- To navigate between active variant rows, use and buttons.
- To navigate between variant rows with errors, use 🔄 and 🔊 buttons.
- To navigate between rows which represent overridden variant choices,

use and in buttons.

Hierarchy Table

The model hierarchy is displayed as a tree with each block representing a node in the hierarchy. Active, inactive, overridden, and rows that have errors are displayed in multiple colors. You can edit sub model configurations, variant controls, and variant conditions where applicable. Right-click context menu allows you to navigate to the blocks, models, block parameter dialogs, and change variant overrides. Rows that display model references use the **Show** drop down. Protected submodels are skipped from validation and cannot be viewed in the hierarchy. Columns displayed in the hierarchy table:

Name

Name of the model or block along with appropriate icons.

Submodel Configuration

Displays and allows you to edit configurations used by sub models. You can only edit the **Submodel Configuration** column for rows that display model references for the top model.

Variant Control

Displays and allows you to edit the variant control parameter of a variant choice. This is identical to the variant control column of the parameter dialog of variant blocks. You can edit this column for variant choices across the hierarchy.

Condition

Displays and allows you to edit the condition for the Simulink.Variant object when used as variant control. For variant control that are not Simulink.Variant objects, this column displays the non applicability of the variant control. You can edit this column for variant choices across the variant hierarchy.

Validation Results Pane

In this section...

"Source" on page 8-11

"Message" on page 8-11

The **Validation results** pane displays information on source of control variables for the models in the hierarchy. For example, if a variant configuration is used for a sub model, the sub model name is displayed in the row along with name of the variant configuration data object and variant configuration. The **Validation results** pane also displays information on errors encountered during validation of the variant configuration. One row each is displayed for the models considered for validation and errors for a particular model are shown as sub rows corresponding to a model. You can navigate to the source of errors by clicking these rows. The total count of errors is also displayed.

To re-validate the configuration and refresh the hierarchy, click button .

Source

Displays the model name or the block path.

Message

Displays the data source information, and errors.